Skip to main content
  • Review Article
  • Published:

The soluble CTLA-4 receptor and its role in autoimmune diseases: an update

Abstract

CTLA-4, initially described as a membranebound molecule, is a costimulatory receptor transducing a potent inhibitory signal. Increasing evidence shows the CTLA-4 gene to be an important susceptibility locus for autoimmune endocrinopathies and other autoimmune disorders. A soluble form of cytotoxic T-lymphocyte-associated antigen-4 (sCTLA-4) has been established and shown to possess CD80/CD86 binding activity and in vitro immunoregulatory functions. sCTLA-4 is generated by alternatively spliced mRNA. Whereas low levels of sCTLA-4 are detected in normal human serum, increased serum levels are observed in several autoimmune diseases (e.g. Graves’ disease, myasthenia gravis, systemic lupus erythematosus, type 1 diabetes, systemic sclerosis, coeliac disease, autoimmune pancreatitis and primary biliary cirrhosis). The biological significance of increased sCTLA-4 serum levels is not fully clarified yet. On the one hand, it can be envisaged that sCTLA-4 specifically inhibits early T-cell activation by blocking the interaction of CD80/CD86 with the costimulatory receptor CD28. On the other hand, higher levels of sCTLA-4 could compete for the binding of the membrane form of CTLA-4 with CD80/CD86 in the later phases of T-lymphocyte activation, causing a reduction in inhibitory signalling. This double-edged nature of sCTLA-4 to block the binding of CD28 to CD80/CD86 may result in different outcomes during the clinical course of an autoimmune disease.

References

  1. Lenschow DJ, Walunas TL, Blueston JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  Google Scholar 

  2. Bocko D, Kosmaczewska A, Ciszak L et al (2002) CD28 costimulatory molecule — expression, structure and function. Arch Immunol Ther Exp 50:169–177

    Google Scholar 

  3. Shapiro VS, Truitt KE, Imboden JB et al (1997) CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol 17:4051–4058

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walunas TL, Lenschow DJ, Bakker CY et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413

    Article  PubMed  Google Scholar 

  5. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  PubMed  Google Scholar 

  6. Saverino D, Tenca C, Zarcone D et al (1999) CTLA-4 (CD152) inhibits the specific lysis mediated by human cytolytic T lymphocytes in a clonally distributed fashion. J Immunol 162:651–658

    PubMed  Google Scholar 

  7. Merlo A, Tenca C, Fais F et al (2005) Inhibitory receptors CD85j, LAIR-1, and CD152 down-regulate immunoglobulin and cytokine production by human B lymphocytes. Clin Diagn Lab Immunol12:705–712

    Google Scholar 

  8. Laurent S, Carrega P, Saverino D et al CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol. DOI: http://dx.doi.org/10.1016/j.humi-mm.2010.07.007

  9. Saverino D, Merlo A, Bruno S et al (2002) Dual effect of CD85/leukocyte Ig-like receptor-1/Ig-like transcript 2 and CD152 (CTLA-4) on cytokine production by antigen-stimulated human T cells. J Immunol 168:207–215

    Article  PubMed  Google Scholar 

  10. Oaks MK, Hallett KM, Penwell RT et al (2000) A native soluble form of CTLA-4. Cell Immunol 201:144–153

    Article  PubMed  Google Scholar 

  11. Simone R, Saverino D (2009) The soluble CTLA-4 receptor and its emerging role in autoimmune diseases. Curr Immunol Rev 5:54–68

    Article  Google Scholar 

  12. Wong CK, Lun SWM, Ko FW et al (2005) Increased expression of plasma and cell surface co-stimulatory molecules CTLA-4, CD28 and CD86 in adult patients with allergic asthma. Clin Exp Immunol 141:122–129

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saverino D, Riccio AM, Rogkakou A et al (2009) Serum CTLA-4 in Hymenoptera venom allergy end its modulation by specific immunotherapy. J Allergy Clin Immunol 123:258–260

    Article  PubMed  Google Scholar 

  14. Sakthivel P, Wermeling F, Elmgren A et al (2010) Circulating soluble CTLA-4 is related to inflammatory markers in the 70 year old population. Scand J Clin Lab Invest 70:237–243

    Article  PubMed  Google Scholar 

  15. Tunbridge WM, Evered DC, Hall R et al (1997) The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol 7:481–493

    Article  Google Scholar 

  16. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  PubMed  Google Scholar 

  17. Awata T, Kurihara S, Iitaka M et al (1998) Association of CTLA-4 gene A-G polymorphism (IDDM12 locus) with acute-onset and insulin-depleted IDDM as well as autoimmune thyroid disease (Graves’ disease and Hashimoto’s thyroiditis) in the Japanese population. Diabetes 47:128–129

    Article  PubMed  Google Scholar 

  18. Kouki T, Sawai Y, Gardine CA et al (2000) CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J Immunol 165:6606–6611

    Article  PubMed  Google Scholar 

  19. Mochizuki M, Amemiya S, Kobayashi K et al (2003) Association of the CTLA-4 gene 49 A/G polymorphism with type 1 diabetes and autoimmune thyroid disease in Japanese children. Diabetes Care 26:843–847

    Article  PubMed  Google Scholar 

  20. Oaks MK, Hallett KM (2000) A soluble form of CTLA-4 in patients with autoimmune thyroid disease. J Immunol 164:5015–5018

    Article  PubMed  Google Scholar 

  21. Lafage-Pochitaloff M, Costello R, Couez D et al (1990) Human CD28 and CTLA-4 Ig superfamily genes are located on chromosome 2 at bands q33–q34. Immunogenetics 31:198–201

    Article  PubMed  Google Scholar 

  22. Harper K, Balzano C, Rouvier E et al (1991) CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal localization. J Immunol 147:1037–1044

    PubMed  Google Scholar 

  23. Linsley PS, Greene JL, Brady WH et al (1994) Human B.7-1(CD80) and B.7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1:793–801

    Article  PubMed  Google Scholar 

  24. Nisticò L, Buzzetti R, Pritchard LE et al (1996) The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum Mol Genet 5:1075–1080

    Article  PubMed  Google Scholar 

  25. Deichmann K, Heinzmann A, Brüggenolte et al (1996) An Mse I RFLP in the human CTLA4 promotor. Biochem Biophys Res Commun 225:817–818

    Article  PubMed  Google Scholar 

  26. Davies TF (1996) The pathogenesis of Graves’ disease. In: Braverman LE, Utiger RD (eds) The thyroid, 7th edn. Lippincott-Raven, Philadelphia, pp 525–536

    Google Scholar 

  27. Tomer Y, Huber A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun 32:231–239

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weetman AP, McGregor AM (1994) Autoimmune thyroid disease: further developments in our understanding. Endocr Rev 15:788–830

    PubMed  Google Scholar 

  29. Yanagawa T, Hidaka Y, Guimaraes V et al (1995) CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 80:41–45

    PubMed  Google Scholar 

  30. Zhao SX, Pan CM, Cao HM et al (2010) Association of the CTLA4 gene with Graves’ disease in the Chinese Han population. PLoS One 5:e9821

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gu LQ, Zhu W, Zhao SX et al (2010) Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves’ disease. Clin Endocrinol 72:248–255

    Article  Google Scholar 

  32. Yin X, Latif R, Bahn R et al (2008) Influence of the TSH receptor gene on susceptibility to Graves’ disease and Graves’ ophthalmopathy. Thyroid 18:1201–1206

    Article  PubMed  PubMed Central  Google Scholar 

  33. Daroszewski J, Pawlak E, Karabon L et al (2009) Soluble CTLA-4 receptor an immunological marker of Graves’ disease and severity of ophthalmopathy is associated with CTLA-4 Jo31 and CT60 gene polymorphisms. Eur J Endocrinol 161:787–793

    Article  PubMed  Google Scholar 

  34. Dallos T, Avbelj M, Barák L et al (2008) CTLA-4 gene polymorphisms predispose to autoimmune endocrinopathies but not to celiac disease. Neuro Endocrinol Lett 9:334–340

    Google Scholar 

  35. Douroudis K, Prans E, Kisand K et al (2009) Cytotoxic Tlymphocyte antigen 4 gene polymorphisms are associated with latent autoimmune diabetes in adults. Clin Chim Acta 403:226–228

    Article  PubMed  Google Scholar 

  36. Saleh HM, Rohowsky N, Leski M (2008) The CTLA4 -819 C/T and +49 A/G dimorphisms are associated with Type 1 diabetes in Egyptian children. Indian J Hum Genet 14:92–98

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kristiansen OP, Larsen ZM, Pociot F (2000) CTLA-4 in autoimmune diseases — a general susceptibility gene to autoimmunity? Genes Immun 1:170–184

    Article  PubMed  Google Scholar 

  38. Fritze D, Herrman C, Naeim F et al (1974) HL-A antigens in myasthenia gravis. Lancet 1:240–242

    Article  PubMed  Google Scholar 

  39. Fernández-Mestre M, Sánchez K, Balbás O et al (2009) Influence of CTLA-4 gene polymorphism in autoimmune and infectious diseases. Hum Immunol 70:532–535

    Article  PubMed  Google Scholar 

  40. Wray BN, Stankovich J, Whittock L et al (2008) CTLA-4 and multiple sclerosis: the A49G single nucleotide polymorphism shows no association with multiple sclerosis in a Southern Australian population. J Neuroimmunol 196:139–142

    Article  PubMed  Google Scholar 

  41. Muñoz-Valle JF, Valle Y, Padilla-Gutiérrez JR et al (2010) The +49A>G CTLA-4 polymorphism is associated with rheumatoid arthritis in Mexican population. Clin Chim Acta 411:725–728

    Article  PubMed  Google Scholar 

  42. Holopainen P, Naluai AT, Moodie S et al; Members of the European Genetics Cluster on Coeliac Disease (2004) Candidate gene region 2q33 in European families with coeliac disease. Tissue Antigens 63:212–222

    Article  PubMed  Google Scholar 

  43. Talwalkar JA, Lindor KD (2003) Primary biliary cirrhosis. Lancet 362:53–61

    Article  PubMed  Google Scholar 

  44. Gershwin ME, Mackay IR (2008) The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 47:737–745

    Article  PubMed  Google Scholar 

  45. Invernizzi P, Selmi C, Poli F et al (2008) Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls. Hepatology 48:1906–1912

    Article  PubMed  PubMed Central  Google Scholar 

  46. Donaldson PT, Baragiotta A, Heneghan MA et al (2006) HLA class II alleles, genotypes, haplotypes, and amino acids in primary biliary cirrhosis: a large-scale study. Hepatology 44:667–674

    Article  PubMed  Google Scholar 

  47. Shimoda S, Nakamura M, Ishibashi H et al (1995) HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 181:1835–1845

    Article  PubMed  Google Scholar 

  48. Joshita S, Umemura T, Yoshizawa K et al; Shinshu PBC Study Group (2010) Association analysis of cytotoxic T-lymphocyte antigen 4 gene polymorphisms with primary biliary cirrhosis in Japanese patients. J Hepatol 53:537–541

    Article  PubMed  Google Scholar 

  49. Saverino D, Brizzolara R, Simone R et al (2007) Soluble CTLA-4 in autoimmune thyroid diseases: relationship with clinical status and possible role in the immune response dysregulation. Clin Immunol 123:190–198

    Article  PubMed  Google Scholar 

  50. Wang XB, Kakoulidou M, Giscombe R et al (2002) Abnormal expression of CTLA-4 by T cells from patients with myasthenia gravis: effect of an AT-rich gene sequence. J Neuroimmunol 130:224–232

    Article  PubMed  Google Scholar 

  51. Simone R, Brizzolara R, Chiappori A et al (2009) A functional soluble form of CTLA-4 is present in the serum of celiac patients and correlates with mucosal injury and tTG antibody production. Int Immunol 21:1037–1045

    Article  PubMed  Google Scholar 

  52. Wang XB, Giscombe R, Yan Z et al (2002) Expression of CTLA-4 by human monocytes. Scand J Immunol 55:53–60

    Article  PubMed  Google Scholar 

  53. Liu MF, Wang CR, Chen PC et al (2003) Increased of expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 57:568–572

    Article  PubMed  Google Scholar 

  54. Sato S, Fujimoto M, Hasegawa M et al (2004) Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology 43:1261–1266

    Article  PubMed  Google Scholar 

  55. Wong CK, Lit LCW, Tam LS et al (2005) Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology 44:989–994

    Article  PubMed  Google Scholar 

  56. Bergholdt R, Taxvig C, Eising S et al (2005) BLB variants in type 1 diabetes and their genetic interaction with CTLA4. J Leukoc Biol 77:579–585

    Article  PubMed  Google Scholar 

  57. Brunet JF, Denizot F, Luciani MF et al (1987) A new member of the immunoglobulin superfamily — CTLA-4. Nature 328:267–270

    Article  PubMed  Google Scholar 

  58. Dariavach P, Mattei MG, Golstein P et al (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human cytoplasmic domains. Eur J Immunol 18:1901–1905

    Article  PubMed  Google Scholar 

  59. Ligers A, Xu C, Saarinen S et al (1999) The CTLA-4 gene is associated with multiple sclerosis. J Neuroimmunol 97:182–190

    Article  PubMed  Google Scholar 

  60. Toussirot E, Saas P, Deschamps M et al (2009) Increased production of soluble CTLA-4 in patients with spondylarthropathies correlates with disease activity. Arthritis Res Ther 11:R101

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tector M, Khatri BO, Kozinski K et al (2009) Biochemical analysis of CTLA-4 immunoreactive material from human blood. BMC Immunol 10:51–60

    Article  PubMed  PubMed Central  Google Scholar 

  62. Umemura T, Ota M, Hamano H et al (2008) Association of autoimmune pancreatitis with cytotoxic T-lymphocyte antigen 4 gene polymorphisms in Japanese patients. Am J Gastroenterol 103:588–594

    Article  PubMed  Google Scholar 

  63. Lowe RM, Graham J, Sund G et al (2000) The length of the CTLA-4 microsatellite (AT)N-repeat affects the risk for type 1 diabetes. Autoimmunity 32:173–180

    Article  PubMed  Google Scholar 

  64. Chang M-C, Chang Y-T, Tien Y-W et al (2007) T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chemi 53:1700–1705

    Article  Google Scholar 

  65. Grohmann U, Orabona C, Fallarino F et al (2002) CTLA-4-Ig regulates catabolism in vivo. Nat Immunol 3:1097–1101

    Article  PubMed  Google Scholar 

  66. Mellor AL, Munn DH (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 20:469–473

    Article  PubMed  Google Scholar 

  67. Kawa S, Ota M, Yoshizawa K et al (2002) HLA DRB10405-DQB10401 haplotype is associated with autoimmune pancreatitis in the Japanese population. Gastroenterology 122:1264–1269

    Article  PubMed  Google Scholar 

  68. Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    Article  PubMed  Google Scholar 

  69. Andreevski TV, Sudomoina MA, Gusev EI et al (2002) Polymorphism A/G in position +49 of CTLA4 exon 1 in multiple sclerosis in Russians. Mol Biol 36:643–648

    Article  Google Scholar 

  70. Djilali-Saiah I, Schmitz J, Harfouch-Hammoud E et al (1998) CTLA-4 gene polymorphism is associated with predisposition to celiac disease. Gut 43:187–189

    Article  PubMed  PubMed Central  Google Scholar 

  71. Orozco G, Torres B, Nunez-Roldan A et al (2004) Cytotoxic Tlymphocyte antigen-4-CT60 polymorphism in rheumatoid arthritis. Tissue Antigens 64:667–670

    Article  PubMed  Google Scholar 

  72. Vaidya B, Pearce S (2004) The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol 150:619–626

    Article  PubMed  Google Scholar 

  73. Giorelli M, Livera P, Defazio G et al (2001) IFN-beta1a modulates the expression of CTLA-4 and CD28 splice variants in human mononuclear cells: induction of soluble isoforms. J Interferon Cytokine Res 21:809–812

    Article  PubMed  Google Scholar 

  74. Finger EB, Bluestone JA (2002) When ligand becomes receptor — tolerance via B7 signaling on DCs. Nat Immunol 3:1056–1057

    Article  PubMed  Google Scholar 

  75. Kaartinen T, Lappalainen J, Haimila K et al (2007) Genetic variation in ICOS regulates mRNA levels of ICOS and splicing isoforms of CTLA4. Mol Immunol 447:1644–1651

    Article  Google Scholar 

  76. Swain SL, Huston G, Tonkonogy S et al (1991) Transforming growth factor-beta and IL-4 cause helper T cell precursors to develop into distinct effector helper cells that differ in lymphokine secretion pattern and cell surface phenotype. J Immunol 147:2991–3000

    PubMed  Google Scholar 

  77. Catassi C, Fasano A (2010) Celiac disease diagnosis: simple rules are better than complicated algorithms. Am J Med 123:691–693

    Article  PubMed  Google Scholar 

  78. Sugai E, Moreno ML, Hwang HJ et al (2010) Celiac disease serology in patients with different pretest probabilities: is biopsy avoidable? World J Gastroenterol 16:3144–315

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Bagnasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saverino, D., Simone, R., Bagnasco, M. et al. The soluble CTLA-4 receptor and its role in autoimmune diseases: an update. Autoimmun Highlights 1, 73–81 (2010). https://doi.org/10.1007/s13317-010-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13317-010-0011-7

Keywords