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Abstract Exogenous and endogenous environmental

exposures and particularly infections may participate in the

breakage of tolerance and the induction of autoimmunity in

rheumatic diseases. Response to infections apparently

occurs years before clinical manifestations and features of

autoimmunity, such as autoantibodies, are detected years

before clinical manifestations in autoimmune rheumatic

diseases. In this review, we summarize the current evi-

dence for a potential causal link between infectious agents

and rheumatoid arthritis, systemic lupus erythematosus,

systemic sclerosis, Sjogren’s syndrome and ANCA-asso-

ciated vasculitis.
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Abbreviations

ab Antibody

ACPA Anti-citrullinated peptide antibody

CEP-1 Citrullinated a-enolase peptide-1

CIA Collagen-induced arthritis

EBV Epstein-Barr virus

EBNA-1 EBV nuclear antigen-1

ELS Ectopic lymphoid follicle-like structures

GVHD Graft-versus-host disease

hCMV Human cytomegalovirus

HCV Hepatitis C virus

HTLV Human T cell leukemia virus

IFN Interferon

IL Interleukin

LAMP Lysosomal membrane protein-2

mCMV Murine cytomegalovirus

NET Neutrophil extracellular traps

PAD Peptidylarginine deiminase

RA Rheumatoid arthritis

SM Synovial membrane

SS Sjögren syndrome

SSc Systemic sclerosis

TLR Toll-like receptor

TNF Tumor necrosis factor

Introduction

Infectious agents have long been suspected as initiating

agents (etiology) of rheumatic diseases. In the 19th cen-

tury, the belief that rheumatoid arthritis (RA) was caused

by mycobacteria led to treatment of rheumatoid arthritis

with gold salts used for the treatment of infectious diseases.

Epidemiological and family studies have shown that

environmental factors play a significant role in the devel-

opment of rheumatic diseases [1]. This is exemplified by

the low concordance rate of RA in monozygotic twins but

higher than that in dizygotic twins. Moreover, environ-

mental factors appear to work in a proper genetic back-

ground in various autoimmune rheumatic diseases [2].

Infectious agents are part of the environmental insults to

human beings. Infectious agents can cause autoimmunity

and autoimmune disease by various mechanisms. For

instance, an immune response to an infectious agent may

result in an autoimmune disease by molecular mimicry,

epitope spreading, bystander activation or pathogen per-

sistence [3, 4]. Another mechanism is through epigenetic
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changes [5, 6]. Bacterial agents but also commensal bac-

teria can cause epigenetic modification of host genes.

Epigenetic changes are DNA modification without change

in nucleotide sequence and post-translational histone

modification, all of which change chromatin configuration

and thus accessibility of genes to transcription machinery.

For example, intestinal commensal bacteria affect DNA

methylation of the Toll-like receptor 4 (TLR4) gene of the

host that recognizes the lipopolysaccharide of Gram (-)

bacteria [7]. Another means of epigenetic modification is

through microRNAs (miRNAs). miRNA is a small (20–30

nucleotide long) non-coding RNA that silences the target

gene by binding to its mRNA [8]. Besides endogenous

miRNAs, exogenous miRNAs can affect the expression of

human genes. For example, miR168a from consumed rice

can bind to human and mouse LDL receptor protein-1

mRNA and inhibit its translation [9].

In the following sections, we will present epidemio-

logical, clinical, immunological and experimental data that

link autoimmune rheumatic diseases with specific infec-

tious agents.

Rheumatoid arthritis

Rheumatoid arthritis is a chronic inflammatory polyarthritis

that affects most commonly the small joints of the hands and

feet and may affect extra-articular tissues and organs, most

importantly lungs and the cardiovascular system. In RA,

environmental factors appear to play a more significant role

than genetic factors. The concordance rate of RA around

14 % in monozygotic twins and 4 % in dizygotic twins

suggests a rather small influence of genetic factors on the

development of the disease [10–13]. Two environmental

factors are known as risk factors for RA, namely peri-

odontitis and cigarette smoking [10, 11, 14–16]. Among

genetic factors, HLA genes are the best studied genes in RA.

RA is associated with HLA-DRB1* alleles carrying a

common amino acid sequence at position 70–74 of the b
chain, which is refered to as shared epitope (SE, HLA-

DRB1*SE) [17, 18]. HLA-DRB1* alleles on antigen-pre-

senting cells present antigen to T cells. Therefore, and given

that interferon (IFN)-c (a Th1 product) and interleukin(IL)-

17 (a Th17 product) are elevated in RA, the association with

the HLA-DRB1*SE suggests that in RA, HLA-DRB1*SE

alleles present an arthritogenic peptide to T cells to initiate

an immune response that culminates in a cytokine cascade

with IFN-c, IL-17, tumor necrosis factor (TNF)-a and IL-6

[19, 20]. Alternatively, the HLA-DRB1*SE itself may be the

target of an immune response. For instance, the Epstein-Barr

virus (EBV) gp110 glycoprotein shares sequence homology

with HLA-DRB1*SE and an initial immune response to

EBV may later also involve human HLA-DRB1*SE by

molecular mimicry [21].

For many years, rheumatoid factor was the only evi-

dence for autoimmunity in RA. In recent years, citrulli-

nated proteins have been shown to be the targets of B cells

and T cells in RA. Citrulline derives from arginine residues

by post-translational modification of proteins through the

action of the enzyme peptidylarginine deiminase (PAD).

Anti-citrullinated peptide antibodies (ACPAs) appear up to

10 years before the onset of clinical arthritis in RA [22, 23]

and are a strong susceptibility factor for RA [23–25]. In

fact, ACPAs are detected in around 70 % of patients with

RA, and are correlated with the severity of the disease

[26, 27]. More interestingly, ACPAs are associated with

HLA-DRB1*SE [23–25]. The apparent explanation for

association is that T cells recognize citrullinated peptides

sitting on HLA-DRB1*SE on B cells and provide help to B

cells for the production of ACPAs. Indeed, HLA-

DRB1*SE alleles bind to citrullinated peptides in RA, as

citrulline but not arginine was eluted from HLA-

DRB1*04:01/04(SE) alleles [28]. In addition, CD4(?) T

cells from the peripheral blood of HLA-DRB1*04:01 (an

HLA-DRB1*SE allele) patients with RA, were found to

recognize citrullinated vimentin and citrullinated aggrecan

[28]. Furthermore, oligoclonal expansions of T cells were

detected in synovial biopsies from ACPA(?) RA patients

compared to ACPA(-) RA patients [29, 30]. It is worth

reminding that oligoclonal expansion of T cells indicates

an antigen-driven activation and proliferation of T cells.

As mentioned, two environmental factors, namely

periodontitis and cigarette smoking, are risk factors for RA

and may exert this susceptibility via protein citrullination

and ACPA production. Cigarette smoking is a strong

inducer of protein citrullination in a proper genetic back-

ground. Furthermore, cigarette smoking is a risk factor for

ACPA in RA patients carrying the HLA-DRB1*SE [31],

and this tobacco exposure-HLA-DRB1*SE interaction has

been confirmed in a number of studies [32–34]. Animal

models provide explanation for this association: tobacco

exposure induces PAD in transgenic mice carrying RA-

susceptible HLA-DR alleles [35], thus providing a means

for new antigens (autoantigens) to the immune system. P.

gingivalis, a microbe that is the major causative agent for

periodontitis, possesses PAD that can cause citrullination

of both bacterial and host proteins [36]. A citrullinated a-

enolase peptide-1 (CEP-1) was identified as a dominant B

cell epitope present in 36–60 % of RA patients [37]. It is

worth mentioning that CEP-1 is highly conserved in

prokaryotes and eukaryotes, and human CEP-1 shares

100 % homology of a 9 amino acid span with P. gingivalis

a-enolase [37]. Antibodies to human CEP-1 cross-reacted

with recombinant P. gingivalis a-enolase [37] and anti-

citrullinated bacterial a-enolase antibodies are detected in

ACPA(?) RA patients [38]. P. gingivalis can contribute to

RA through another mechanism. P. gingivalis DNA was
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detected in synovial fluid from RA patients more fre-

quently than in controls (15.7 vs 3.5 %) [39]. Furthermore,

P. gingivalis DNA can induce IL-1, IL-6 and TNFa pro-

duction in a monocytic cell line through TLR9 [40]. These

findings suggest that bacterial persistence in the joints may

also contribute to the synovial inflammation in RA.

Active EBV infection also appears to contribute to syn-

ovial membrane (SM) expansion and differentiation of

autoreactive B cells. For instance, in ectopic lymphoid,

follicle-like structures (ELS)-containing RA synovial

membrane, latent and lytic EBV infection were detected,

and a large proportion of plasma cells producing ACPAs

were infected with EBV. Furthermore, ELS-containing RA

SM transplanted into severe combined immunodeficiency

(SCID) mice produced ACPAs and anti-EBV antibodies

[41]. All the above data point to the notion that cross-re-

activity between bacteria and human citrullinated proteins

can break tolerance and induce arthritis.

The finding of an autoantigen does not prove its

pathogenicity, i.e., cause of tissue injury. Experimental

data support the notion that citrullinated peptides are

arthritogenic autoantigens in RA. Thus, both citrullination

of proteins and the HLA-DRB1* SE, are required for the

development of arthritis: citrullinated fibrinogen but not

unmodified fibrinogen could induce arthritis in transgenic

mice carrying DRB1*04:01 (an HLADRB1*SE allele). On

the other hand, citrullinated or unmodified fibrinogen could

not induce arthritis in wild-type (B6) mice [42]. ACPAs

against citrullinated vimentin induce osteoclastogenesis

and bone loss, cardinal features of joint involvement in RA

[43]. Also immune complexes containing citrullinated

fibrinogen stimulated macrophage TNFa production

through TLR4 and Fcc receptor [44]. In collagen-induced

arthritis, a PAD inhibitor reduced the severity of arthritis,

an effect that supports an arthritogenic role for citrullina-

tion and ACPA production in RA [45]. Furthermore, P.

gingivalis infection exacerbated collagen-induced arthritis

(CIA), and this exacerbation was dependent on the

expression of P. gingivalis PAD [46].

Citrullinated antigens are detected in neutrophil extra-

cellular traps (NETs), formed spontaneously or in stimu-

lated RA neutrophils [47, 48]. NETs are structures of

decondensed chromatin and granule antimicrobial lysoso-

mal proteins, such as proteinase-3, myeloperoxidase,

lactoferrin, elastase and others. NETs are extruded from

neutrophils while dying (NETosis) to kill bacteria [49].

ACPAs may be produced in lymphoid organs, as most

antibodies, or in local tissues. Higher expression of PAD2

was detected in bronchial mucosa and bronchoalveolar

lavage cells in healthy smokers compared to non-smokers

[50]. The inflamed synovial membrane of RA is a site for

ACPA production, since ACPA levels were higher in

synovial fluid compared with serum from the same patients

[24, 51]. Further supporting evidence comes from the

finding that the majority of synovial membrane IgG-ex-

pressing B cells are specific for citrullinated autoantigens

in ACPA(?) RA patients [52]. It has already been men-

tioned that ACPAs are produced in RA synovial membrane

as ELS-containing RA SM transplanted into SCID mice

produced ACPAs along with anti-EBV antibodies [41].

The gut microbiome may also affect the immune

response in a proper genetic background in RA. For

example, transgenic mice carrying the RA-susceptible

allele HLA-DRB1*04:01 have a differential Th17 cytokine

profile and do not exhibit the sex- and age-difference in gut

microbiome that transgenic mice carrying the RA-resistant

allele HLA-DRB1*04;02 exhibit [53].

Systemic sclerosis

Systemic sclerosis (SSc) is a chronic systemic disease

characterized by fibrosis of the skin and internal organs,

vasculopathy, and activation of the immune system. Vas-

culopathy comprises of vasospastic episodes (Raynaud’s

phenomenon, RP) and fibrointimal proliferation of small

vessels, whereas immune activation is evident by serum

autoantibodies detected in patients with SSc, and the

oligoclonal expansion of T cells in skin lesions [54]. The

best known autoantibodies in SSc are antinuclear anti-

bodies and anti-topoisomerase I antibodies (formerly

Scl70), which are associated with diffuse cutaneous dis-

ease, and anti-centromere antibodies, which are associated

with limited cutaneous disease. RP and autoantibodies

appear years before clinical manifestations of fibrosis, and

microvascular damage (as detected by nailfold capil-

laroscopy) and autoantibodies are independent predictors

for the progression of RP to SSc [55]. The pathogenesis of

SSc is incompletely understood [56]. In the avian sclero-

derma model, endothelial cell apoptosis was the earliest

change detected [57]. Environmental factors play a major

role in the development of the disease since the concor-

dance rate of SSc in monozygotic twins is low (4.7 %) and

equal to dizygotic twins [58]. Molecular mimicry has been

suggested as early pathogenetic mechanism for SSc and

several microbes have been implicated, including human

cytomegalovirus (hCMV), EBV, endogenous retroviruses

and H. pylori. The strongest data supporting a pathogenetic

role in SSc holds for hCMV and EBV. Early studies

reported increased serum levels of anti-hCMV antibodies

in SSc patients [59]. In addition, SSc patients have anti-

bodies against an epitope of the hCMV late protein UL94,

that shares homology with the novel antigen-2 (NAG-2),

present on endothelial cells. Anti-UL94 antibodies bind to

NAG-2 on endothelial cells and induce apoptosis [60].

NAG-2 is also expressed on human fibroblasts and anti-

UL94 antibodies bind to fibroblasts that acquire a
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profibrotic phenotype [61]. Furthermore, hCMV-derived

UL70 protein shares homology with Topoisomerase I.

hCMV is also associated with increased risk of graft-ver-

sus-host disease (GVHD), a condition that develops after

bone marrow transplantation, shares clinical and serologi-

cal features with SSc and is considered a model for SSc

[62]. Murine CMV (mCMV) can invade endothelial cells

in mice and cause latency and intermittent shedding of the

virus. mCMV-infected irradiated interferon-c receptor

knock-out (IFNcR-/-) mice exhibit neointima formation

with myofibroblast proliferation in small vessels [63].

EBV is another candidate causative agent for SSc. EBV

is a lymphotropic virus infecting the vast majority of adult

population. EBV causes latency but is also reactivated into

lytic infection and, besides B cells, can infect the majority

of fibroblasts and endothelial cells in the skin of patients

with SSc. Furthermore, EBV activates fibroblasts towards

profibrotic phenotype through TLR, TGFb1 and endothelin

[64]. Parvovirus B19 may also participate in SSc patho-

genesis, since parvovirus B19 DNA was detected in the

bone marrow of SSc patients but not in controls [65].

Inflammasome, activated by dangerous stimuli and

through the action of caspase, induces the production of

inflammatory mediators, such as interleukin-1, and is

activated in SSc. Increased expression of NLRP3 and

AIM2 inflammasome proteins was detected in SSc skin

fibroblasts, while inhibition of caspace abrogated the

secretion of collagen, IL-1b and IL-18 [66]. It should be

mentioned that the AIM2 inflammasome is a sensor for

cytosolic bacterial and viral DNA [67].

Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a multisystem dis-

ease affecting mostly women in reproductive years. It is

characterized by many autoantibodies [68], including

antinuclear antibodies, anti-dsDNA antibodies, anti-Sm

antibodies and anti-Ro antibodies. Both genetic and envi-

ronmental factors interplay for the development of the dis-

ease [69] as the concordance rate of SLE in monozygotic

twins (24 %) is higher than that in dizygotic twins (2 %)

[70]. EBV has long been suspected to play a pathogenic role

in SLE. EBV-IgA antibodies, which are thought to reflect

reactivation or re-infection with EBV, were associated with

SLE, particularly in African-Americans [71, 72]. Antibodies

to EBV nuclear antigen-1 (EBNA-1) and EBNA-2 cross-

react with SmD and 60 kD Ro, and mice or rabbits immu-

nized with EBNA-1 develop experimental lupus [73, 74]. It

should be mentioned that 44 % of patients with primary

acute EBV infection have serum antibodies against

extractable nuclear antigens (ENA) [75].

Retroviruses are also candidate agents in SLE [76].

Retroviruses are small viruses that use reverse transcription

for their replication. Human endogenous retroviruses

(HERV) are retroviruses thought to be trapped into the

human genome. These retroviruses can be activated by

many environmental factors, such as infections, ultraviolet

(UV) light, hormones, stress and drugs [76]. In EBV

latency infected B cells, there is transactivation of HERV-

K18 that codes for the env protein, a T cell superantigen. T

cell superantigens bind to Vb segment of T cell receptor

and activate a huge proportion of T cells. Another HERV,

HERV3, codes for an env protein expressed in placenta and

shares homology with the Ro antigen. For long it has been

known that mothers with anti-Ro antibodies have increased

risk for fetal heart block (congenital heart block, CHB) and

mothers of babies with CHB have anti-HERV3 antibodies

that bind to sections of fetal heart [77].

Epigenetic changes caused by infections may also be

another pathogenetic mechanism operating in SLE. Envi-

ronmental factors, such as infection, drugs, smoking and UV

light, cause oxidative stress and DNA demethylation of

certain genes, such as genes of CD4? T cells to become

autoreactive cells [78]. CD4? T cells treated with a DNA

methylation inhibitor (5-azacytidine, 5-azaC) overexpress

CD11a, perforin, CD40L (costimulatory molecule), CD70

(B cell costimulatory molecule), killer cell immunoglobulin-

like receptor (KIR, not normally expressed on T cells) and

stimulate autologous B cells. Similarly, CD4? T cells from

SLE patients overexpress CD11a, perforin (not normally

expressed in T cells), CD40L, CD70 and KIR [76, 78].

Sjögren’s syndrome

Sjögren’s syndrome (SS) is a chronic autoimmune disease,

more prevalent in women, affecting exocrine glads, mostly

salivary and lacrimal glands, but also extraglandular tissues

and organs. SS is characterized by relatively specific

autoantibodies, namely anti-Ro (SSA), anti-La (SSB), and

by ELS in exocrine glands. Hepatitis C virus (HCV), EBV

and human T cell leukemia virus (HTLV)1 have been put

forward as causative agents in SS. In a meta-analysis, SS has

been associated with HCV [79]. Active EBV infection

appears to cause expansion and differentiation of autoreac-

tive B cells in SS. Latent EBV and lytic EBV infection was

detected in ELS-containing SS salivary glands and plasma

cells with Ro52 immunoreactivity were frequently infected

by EBV. Furthermore, ELS-containing SS salivary glands

transplanted into SCID mice produced anti-Ro52 antibodies

and anti-EBV antibodies [41]. Commensal microbiota may

initiate autoimmunity in SS and SLE. For instance, peptides

from the von Willebrand factor type A from the oral

microbe Capnocytophaga ochracea activated HLADR3 (?),

Ro60-reactive T cells [80]. Environmental pollutants, such

as dioxin, through aryl hydrocarbon receptor, reactivates

(switches from latent to lytic infection) EBV in B cells and
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salivary epithelial cells [81]. HTLV1 is associated with SS

in endemic areas, such as Nagasaki in Japan [82, 83]. It

should be mentioned that HTLV1 preferentially transfects

CD4 ? T cells, but can also transfect human primary sali-

vary gland epithelial cells [82].

Vasculitis

Vasculitis is idiopathic inflammation of vessel wall. There

are various types of vasculitis classified according to vessel

size preferentially involved.

ANCA vasculitis

Vasculitis associated with anti-neutrophil cytoplasmic anti-

bodies (ANCA vasculitis) encompasses granulomatosis with

polyangiitis (GPA, formely Wegener’s granulomatosis),

eosinophilic granulomatosis with polyangiitis (EGPA, for-

mely Churg-Strauss syndrome) microscopic polyangiitis,

and pauci-immune glomerulonephritis (focal necrotizing

glomerulonephritis, FNGN). The characteristic features of

these vasculitides are the presence of ANCA in the sera of

patients and the absence of immune deposits in the glo-

meruli on immunofluorence in patients with glomeru-

lonephritis (pauci-immune GN). The mechanisms

responsible for the induction of these diseases are poorly

understood. Classical ANCA’s target is the antimicrobial

lysosomal enzyme either proteinase-3 or myeloperoxidase

[84]. A long standing clinical observation of increased fre-

quency of nasal carriage of S.aureus in patients with GPA

has linked ANCA vasculitis with infectious agents [85]. This

observation has led to antimicrobial treatment of GPA with

beneficial effects. Antibodies against complementary pro-

teinase-3 (cPR3) were found in GPA and cPR3 has

homology with S. aureus antigens [86]. A new and some-

what controversial ANCA subtype, namely anti-lysosomal

membrane protein-2 (LAMP-2), has been linked to ANCA-

associated vasculitis. Patients with FNGN have antibodies to

LAMP-2 epitope 41-49 that has 100 % homology with

FimH, an adhesion molecule present on Gram(-) bacteria

whereas immunization with FimH-induced anti-LAMP-2

antibodies and FNGN [87]. Thus, FNGN provides a direct

link for a molecular mimicry between bacteria and host

proteins. As found in RA, ANCA vasculitis is associated

with increased formation of NETs. NETs can provide

autoantigens to dendritic cells and activate B cells [88]. S.

aureus and ANCAs are strong inducers of NET formation

[89].

Other vasculitides

Other types of vasculitides are also associated with infec-

tious agents. Mixed cryoglobulinaemic vasculitis is

associated with HCV. In fact, 70–100 % of patients with

mixed cryoglobulinaemic vasculitis have evidence of HCV

infection, hence the term HCV-related mixed cryoglobu-

linaemia. HCV is a RNA virus and causes chronic infection

and hence persistent antigenic stimulus that leads to mon-

oclonal IgM rheumatoid factor production, immune com-

plex formation and complement activation [90].

Henoch-Schonlein purpura, a small vessel vasculitis,

primarily in children, has been associated with group A

streptococci, parvovirus B19 and others infectious agents.

Kawasaki disease, which affects medium-sized arteries, has

been associated with viral agents [91], and polyarteritis

nodosa is associated with hepatitis B virus [92].

Conclusion

Interaction between genes and environmental factors,

particularly infectious agents appear to be involved in

the development of autoimmune rheumatic diseases.

Thus far, cigarette smoking and infectious agents caus-

ing periodontitis are clearly two environmental agents

with the strongest evidence for interaction with genes

(HLA-DRB1*SE) in the pathogenesis of RA. The

definitive identification of infectious agents implicated in

other autoimmune rheumatic diseases requires further

investigations.
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