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Short‑chain fatty acids and intestinal 
inflammation in multiple sclerosis: modulation 
of female susceptibility by microbial products?
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Abstract 

Background:  Multiple Sclerosis (MS) is an autoimmune-mediated disease of the central nervous system. Experi-
mental data suggest a role of intestinal microbiota and microbial products such as short-chain fatty acids (SCFAs) in 
the pathogenesis of MS. A recent clinical study reported beneficial effects (mediated by immunomodulatory mecha-
nisms) after oral administration of the SCFA propionate in MS patients. Based on available evidence, we investigated 
whether SCFAs and the fecal inflammation marker calprotectin are altered in MS.

Methods:  76 subjects (41 patients with relapsing–remitting MS and 35 age-matched controls) were investigated in 
this case–control study. All subjects underwent clinical assessment with established clinical scales and provided fecal 
samples for a quantitative analysis of fecal SCFA and fecal calprotectin concentrations. Fecal markers were com-
pared between MS patients and controls, and were analyzed for an association with demographic as well as clinical 
parameters.

Results:  Median fecal calprotectin concentrations were within normal range in both groups without any group-spe-
cific differences. Fecal SCFA concentrations showed a non-significant reduction in MS patients compared to healthy 
subjects. Female subjects showed significantly reduced SCFA concentrations compared to male subjects.

Conclusions:  In our cohort of MS patients, we found no evidence of an active intestinal inflammation. Yet, the vast 
majority of the investigated MS patients was under immunotherapy which might have affected the outcome meas-
ures. The sex-associated difference in fecal SCFA concentrations might at least partially explain female predominance 
in MS. Large-scale longitudinal studies including drug-naïve MS patients are required to determine the role of SCFAs 
in MS and to distinguish between disease-immanent effects and those caused by the therapeutic regime.
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Background
Multiple Sclerosis (MS) is an auto-inflammatory dis-
ease of the central nervous system (CNS). Apart from 
trauma, it is the most common disease leading to 

disability in young adults worldwide [1]. MS can pre-
sent with various neurological symptoms depend-
ing on the affected region in the CNS. There are three 
main subtypes of MS that are defined by the clinical 
course: relapsing–remitting MS (RRMS), primary pro-
gressive MS (PPMS) and secondary progressive MS 
(SPMS). Pathophysiologically, autoreactive Th1 and 
Th17 CD4+ T helper cells and a reduced frequency of 
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regulatory T cells (Tregs) characterize the pro-inflam-
matory environment in MS [2, 3]. The experimental 
autoimmune encephalomyelitis (EAE) mouse model 
is the most widely used animal model for MS. In this 
model, mice receive CD4 + lymphocytes specific for 
myelin or become immunized with proteins or peptides 
deriving from myelin. This intervention results in CNS 
inflammation and MS-typical features [4]. EAE onset 
is strongly linked to microbial stimuli: colonization of 
germ-free mice with commensal bacteria leads to EAE 
development [5], while mice that are kept under germ-
free condition do not routinely develop EAE. Short-
chain fatty acids (SCFAs) are thought to be beneficial in 
EAE: the SCFA butyrate suppresses demyelination and 
enhance remyelination in mice via oligodendrocyte dif-
ferentiation [6]. Other studies also reported significant 
beneficial effects in the EAE model by the SCFAs valer-
ate and propionate [7, 13].

It is concluded that SCFAs, which are microbial prod-
ucts mainly produced by intestinal microbiota, coun-
teract demyelination [6]. Hence, microbiota, microbial 
products and the intestinal immune system are likely to 
be relevant in the pathophysiology of MS. The SCFAs 
acetate, propionate and butyrate are most abundant in 
the gut. SCFAs are produced by intestinal microbiota via 
fermentation of dietary fibers. Acetate and propionate 
derive predominantly from members of the phylum Bac-
teroidetes (such as Prevotellaceae) while butyrate mainly 
originates from bacteria of the phylum Firmicutes (such 
as Faecalibacterium). Valerate is found in lower concen-
trations in the feces compared to the more abundant ace-
tate, propionate and butyrate and is considered to derive 
from different dietary components [7].

Recently, a clinical trial reported a change in the com-
position of the intestinal microbiota accompanied by 
immunomodulatory effects (inter alia restoration of Treg 
frequency) and a beneficial clinical effect after oral pro-
pionate supplementation in drug-naïve MS patients [8].

In mouse models, SCFA showed pro- and anti-inflam-
matory effects [9, 10]. SCFA can enter the systemic 
circulation via the intestinal epithelium and cross the 
blood–brain barrier [3, 10]. SCFA interact with immune 
cells through in different mechanisms such as the NF-kB 
G-protein coupled receptors-mediated pathway. They 
lead to epigenetic modulations in T lymphocytes by 
inhibiting histone deacetylase activity [11], thus leading 
to higher frequencies of Tregs [12]. In turn, Tregs sup-
press overly active T-cell mediated immune responses. 
Valerate has been shown to strongly increase IL-10 levels 
in T- and in regulatory B-cells, a strong immunosuppres-
sive mediator [7].

In summary, SCFAs, which derive from the intestinal 
microbiota, might be a modulating factor in MS pathol-
ogy [13].

While a number of experimental data exist, only few 
studies investigated the intestinal microbiota and SCFAs 
in MS patients. Existing evidence in humans indicates 
that MS patients have an altered gut microbiota compo-
sition [15–17]. A Chinese study also reported a decrease 
in fecal SCFA concentrations [14] and a correlation of 
fecal SCFA concentrations with Treg frequency in MS 
patients. Another study reported reduced SCFA blood 
concentrations in patients with secondary progressive 
MS [15].

Fecal calprotectin (a protein derived from leukocytes 
that migrate into the intestinal lumen under inflam-
matory conditions) is a stable and sensitive established 
marker for inflammatory activity in Crohn’s disease and 
other inflammatory bowel disease (IBD) [16]. Elevated 
fecal calprotectin concentrations have not only been 
described in IBD, but also in other neurological disorders 
such as Parkinson’s disease [17, 18].

Considering the plausible interaction between gut 
microbiota, host immunity and microbial products and 
considering the recent advances in research of the gut-
brain-axis, the limited amount of clinical evidence in 
humans prompted us to investigate fecal calprotectin and 
fecal SCFAs concentrations in RRMS patients and age-
matched healthy controls in a case–control study.

Subjects and methods
This case–control study was reviewed and approved 
by the local ethics committee (Ethikkommission der 
Ärztekammer des Saarlandes, registration number 
81/18). All subjects provided written informed consent.

Subjects were assessed between 2018 and 2019 at the 
Department of Neurology of the Saarland University 
Medical Center, Germany and the Gesundheitszentrum 
Glantal, Germany. Inclusion criteria for patients were a 
diagnosis of a RRMS according to Lublin’s consensus 
classification of 2013 [19] and ability to provide written 
informed consent. Exclusion criteria for patients and 
controls were pregnancy, lack of legal capacity, uncon-
trolled psychiatric diseases, neurodegenerative disorders, 
any disease of acute or chronic intestinal inflammation, 
a coexistent infection within the past four weeks and 
intake of antibiotics during the past eight weeks. The 
presence of a MS relapse at the time of investigation was 
also an exclusion criterion. For control subjects, presence 
or history of any autoimmune-mediated disease was an 
additional exclusion criterion. Patients were grouped in 
mild / moderately active disease and active/highly active 
disease (formerly: “aggressive MS”) due to clinical criteria 
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such as EDSS, MRI disease activity, treatment subgroup 
and response to disease modifying drugs [20, 21].

For analysis of different treatment subgroups, betafer-
ones, glatirameracetate, teriflunomid and dimethylfuma-
rate were defined as basic therapy, whereas natalizumab 
and fingolimod were defined as escalation therapy. This 
is based on the use of the basic therapy drugs as first line 
therapy in mild / moderate MS whereas the escalation 
therapy is usually second line (although it can also be 
used as first line in highly active MS depending on local 
drug approval for this clinical situation) [22, 23].

All subjects underwent a structured medical history 
and a clinical examination including scoring with the 
Expanded Disability Status Scale (EDSS) [24], Mini-
mental status test [25], Fatigue Impact Scale (FIS) [26] 
and the Beck Depression Inventory (BDI) [27]. All sub-
jects were provided with a fecal sampling kit and instruc-
tions on how to collect fecal samples at home as reported 
previously [28]. Fecal SCFA and fecal calprotectin con-
centrations were quantitatively analyzed as previously 
described [28]. Blood C-reactive protein (CRP) concen-
trations were available for the majority of subjects, but 
were not explicitly part of the study protocol.

Data analysis was carried out with IBM SPSS, version 
24®. Normal distribution of data was tested using the 
Shapiro–Wilk test. Except for FIS- and BDI-scores, data 
was not normally distributed. Hence, results are reported 
as median plus range (minimum to maximum). Mann–
Whitney-U and Kruskal–Wallis test were used to com-
pare both groups. Correlation between metric variables 
was analyzed using the Pearson’s correlation coefficient, 
Spearman’s correlation coefficient was used to analyze 
correlations between metric and ordinally scaled param-
eters. Eta correlation coefficient was used when analyzing 
correlations of metric and nominal variables. Statistical 
significance was assumed for p < 0.05 (with a statistical 
power of 0.8).

Results
Demographic and clinical data
RRMS patients (n = 41) and controls (n = 35) were 
matched for age (Table 1). All subjects were of Caucasian 
ethnicity. There was a female predominance in the RRMS 
group (29 of 41 subjects). EDSS scores were significantly 

higher in RRMS patients with an active / highly active 
RRMS (n = 23, median: 3, range 1 to 7) compared to 
those with a mild / moderate disease activity (n = 18, 
median: 2.5, range 0 to 7, p 0.004). All but three RRMS 
patients were under immunotherapies. Detailed informa-
tion concerning individual treatment and disease activ-
ity is provided in Additional file  1: Table  S1. None of 
the subjects enrolled in this case–control study showed 
a clinically relevant increase in CRP concentration (data 
available for 29 of 35 control subjects and 27 of 41 RRMS 
patients, Table 1). None of the enrolled subjects was cur-
rently under corticosteroid therapy; the latency to the 
last corticosteroid therapy (if any) has not been included 
in the study protocol.

Fecal calprotectin concentrations
No significant difference existed between the fecal cal-
protectin concentrations of RRMS patients (median: 
19  µg/g, range 19–141  µg/g) and healthy controls 
(median: 19 µg/g, range 19–328 µg/g) as shown in Fig. 1. 
Concentration were within normal range in both groups. 
There was no difference in fecal calprotectin concentra-
tions between RRMS patients under basic therapy com-
pared to those under escalation therapy, between mild 

Table 1  Distribution of epidemiological and clinical data among subjects

MS patients (n = 41) Controls (n = 35) All subjects (n = 76)

Age in years median [range] 48 [22–68] 48 [23–72] 48 [22–72]

Sex f:m 29:12 13:22 42:34

EDSS score median [range] 2.5 [0–7.0] Not applicable Not applicable

CRP in mg/l median [range] 1.3 [1.0–9.6] 1.1 [1.0–14.0] 1.3 [1.0–14.0]

Fig. 1  Fecal calprotectin in patients and controls visualized 
as boxplot. The control group contains an outlier with a fecal 
calprotectin concentration of 328 µg/g, not depicted for better 
visualization
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disease compared to (highly) active disease, between 
patients with low or high EDSS and no difference 
between different drugs (data not shown). No significant 
difference in fecal calprotectin concentrations between 
both sexes was observed.

Fecal short‑chain fatty acid concentrations
SCFA concentrations were descriptively lower in RRMS 
patients compared to controls (e.g. median fecal butyrate 
concentrations were reduced by 77% in RRMS patients 
compared to control subjects). Yet, there was no statisti-
cally significant difference in fecal SCFA concentrations 
between RRMS patients and controls (Table  2, Fig.  2). 
Median fecal acetate concentration was reduced by 72% 
in patients with an active/highly active RRMS compared 
to those with a mild/moderate activity; this finding was 
also not statistically significant (p 0.554) (Fig.  3). EDSS 

scores did not correlate with fecal SCFA concentrations 
(data not shown).

Aside from the branched SCFAs iso-valerate and iso-
butyrate, all SCFAs concentrations were significantly 
lower in women compared to men (Table 3, Fig. 4). Ana-
lyzing RRMS patients and controls separately, acetate, 
propionate and butyrate were significantly lower in 
women compared to men in the control group (Table 3, 
Fig.  4); for RRMS patients, there was also a descriptive 
difference. Yet, in RRMS this difference did not reach sta-
tistical significance (Table 3, Fig. 4).

All fecal SCFA concentrations showed a statistically 
significant negative correlation with age when analyzing 
all subjects included in the study or analyzing control 
subjects; RRMS patients did not show a significant cor-
relation of SCFAs with age (Table 4).

Table 2  Shows median fecal SCFA-concentrations (in mmol/g) in patients and controls

SCFA Patients (n = 41) Controls (n = 35) p

Acetate in mmol/g median [range] 41.70 [0.07–160.26] 37.95 [0.66–193.06] 0.606

Propionate in mmol/g median [range] 5.51 [0.10–99.47] 11.38 [0.17–87.81] 0.258

Butyrate in mmol/g median [range] 1.25 [0.02–41.49] 5.49 [0.05–52.54] 0.219

IsoButyrate in mmol/g median [range] 1.31 [0.00–6.13] 2.14 [0.01–11.35] 0.171

Valerate in mmol/g median [range] 0.60 [0.00–5.64] 1.02 [0.01–19.76] 0.072

IsoValerate in mmol/g median [range] 1.00 [0.01–5.87] 2.11 [0.01–17.03] 0.128

Fig. 2  Fecal SCFA concentrations in patients and controls
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Discussion
Experimental studies suggest that microbiota, microbial 
products (like SCFAs) and the intestinal immune sys-
tem might be involved in the pathogenesis of MS. Hith-
erto, only sparse clinical data exist. In this case–control 
study we investigated fecal markers of intestinal inflam-
mation in RRMS patients and age-matched control sub-
jects. In consideration of the current evidence pointing 
at a disturbed gut microbiome, we hypothesized that MS 
patients show increased markers of intestinal inflam-
mation (investigated by the surrogate marker fecal 

calprotectin) and reduced concentrations of SCFAs. 
While there were no elevated calprotectin concentrations 
and only a descriptive reduction of SCFA concentrations 
in RRMS patients, we observed a significant sex-related 
difference of fecal SCFA concentrations between men 
and women as a possible indicator of MS susceptibility 
differences among the sexes.

Contrary to what we initially hypothesized, fecal cal-
protectin concentrations, a robust and sensitive marker 
even for subclinical intestinal inflammation, was in 
the normal range in the majority of investigated RRMS 

Fig. 3  Fecal SCFA concentrations sorted for disease activity

Table 3  Shows fecal SCFA concentrations (in mmol/g, median and range) and the respective p value (difference between female and 
male subjects) for each investigated SCFA separately

Patients (n = 41) Controls (n = 35) All (n = 76)

m
n = 12

f
n = 29

p m
n = 22

f
n = 13

p m
n = 34

f
n = 42

p

Acetate 
mmol/g

51.48 [0.67–121.05] 3.76 [0.07–160.26] 0.357 73.4 [1.04–193.06] 8.02 [0.66–71.22] 0.005 68.89 [0.67–193.06] 6.47 [0.07–160.26] 0.012

Propionate 
mmol/g

14.25 [0.37–99.47] 1.29 [0.1–43.07] 0.227 21.09 [0.22–87.81] 1.59 [0.17–27.08] 0.004 19.40 [0.22–99.47] 1.44 [0.01–43.07] 0.002

Butyrate 
mmol/g

9.17 [0.14–39.53] 0.88 [0.02–41.49] 0.127 15.95 [0.05–52.54] 1.89 [0.08–18.98] 0.16 15.63 [0.55–52.54] 1.37 [0.02–41.49] 0.003

IsoButyrate 
mmol/g

1.9 [0.02–4.23] 0.97 [0.004–6.13] 0.436 2.33 [0.02–11.35] 1.55 [0.01–4.01] 0.243 2.10 [0.02–11.35] 0.88 [0.00–6.13] 0.061

Valerate 
mmol/g

1.55 [0.01–5.2] 0.96 [0.002–5.64] 0.142 2.07 [0.01–19.76] 0.63 [0.01–3.05] 0.067 1.58 [0.01–19.76] 0.53 [0.00–5.64] 0.004

Isovalerate 
mmol/g

1.6 [0.02–5.78] 0.099 [0.007–5.49] 0.342 2.25 [0.02–17.03] 2.04 [0.01–5.32] 0.335 1.94 [0.02–17.03] 0.55 [0.01–5.49] 0.068
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patients and there was no difference regarding fecal cal-
protectin concentrations between RRMS and control 
subjects. While there is one study reporting elevated 
calprotectin concentrations in the cerebrospinal fluid of 
MS patients [29], fecal calprotectin concentrations have 
not been reported for MS previously. The fact that most 
investigated RRMS patients were under immunother-
apy, which beside their effect on the CNS alters enteric 
inflammatory processes as well, might explain the finding 
of normal fecal calprotectin concentrations in our RRMS 
cohort. Consequently, the observation of normal fecal 
calprotectin concentrations in our RRMS cohort might 
be particularly explained by the fact that 14 of the inves-
tigated 41 RRMS patients were treated with natalizumab, 
a drug also used in the treatment of Crohn’s disease [30].

Assuming that immunotherapies in MS exert anti-
inflammatory effects also in the gastrointestinal tract, the 
intestinal microbiota (as indicated by Storm-Larsen et al. 
for dimethylfumarate [27]) and subsequently intestinal 
SCFA production might be affected as well. Hence, the 
lack of a significant difference between RRMS patients 
and controls with regard to fecal SCFA concentrations in 
this study might also be explained by a drug effect.

Despite the lack of a statistical significance, we 
observed descriptively lower fecal SCFA concentrations 
in RRMS patients compared to control subjects, espe-
cially for butyrate. This descriptive finding is in line with 
the few studies investigating SCFA in MS: Park et  al. 
showed, that SCFA blood concentrations were reduced 
in MS patients [15]. Yet, blood SCFA concentrations 
are not directly comparable with the fecal concentra-
tions of SCFAs we investigated in this study. A Chinese 
study reported reduced fecal SCFA concentrations in MS 
patients [14]. An altered intestinal microbiota has been 
reported in MS patients as well [31–33]. Moreover, the 
highly significant correlation of fecal SCFA concentra-
tions with age in controls, but not in patients, endorses 
the assumption that either MS or MS therapeutics affect 
the gut microbiome.

Recently, the potential clinical relevance of SCFAs in 
MS has been investigated in a clinical trial [8]: Duscha 
et  al. reported an enhancement of Treg differentiation, 
reduced auto-inflammation and improvements in the 
clinical course of MS after oral administration of pro-
pionate [8]. It is important to note that orally adminis-
tered SCFA are absorbed to a great extent in the small 
intestine. SCFA produced by the gut microbiota in the 

Fig. 4  Fecal acetate concentration in female and male subjects visualized as bar chart

Table 4  Shows the Pearson’s correlation coefficient and respective p values for the correlation between age and fecal SCFA 
concentrations

Patients (n = 41) Controls (n = 35) All subjects (n = 76)

Pearson’s correlation 
coefficient

p Pearson’s correlation 
coefficient

p Pearson’s correlation 
coefficient

p

Acetate − 0.128 0.435 − 0.522 0.001 − 0.335 0.003

Propionate − 0.026 0.874 − 0.483 0.003 − 0.268 0.019

Butyrate − 0.297 0.297 − 0.480 0.003 − 0.335 0.003

IsoButyrate − 0.043 0.791 − 0.452 0.006 − 0.279 0.015

Valerate − 0.088 0.584 − 0.444 0.006 − 0.316 0.005

Isovalerate − 0.01 0.952 − 0.434 0.009 − 0.275 0.016
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colon mainly exert local effects and are unlikely to affect 
systemic SCFA concentrations as effective as an oral 
supplementation.

We are not able to draw conclusions concerning fecal 
calprotectin and SCFA concentrations in drug-naïve 
MS patients as the vast majority of RRMS patients in 
this study was under immunotherapy. Diet was not 
explicitly investigated as part of the study protocol, 
so dietary habits are a potential confounding factor. 
As the investigated RRMS patients were under differ-
ent treatment regimes, we also analyzed subgroups of 
RRMS patients defined by the therapeutic regime. Yet, 
the number of subjects per subgroup was rather small 
and the study population was not treated with the full 
spectrum of available MS therapies. Large-scale lon-
gitudinal studies, including drug-naïve MS patients 
are necessary to distinguish between disease-imma-
nent and therapeutic effects on intestinal inflamma-
tion, intestinal microbiota and microbial products, 
like SCFA, in MS. Another interesting topic for future 
investigations is the role of (subclinical) intestinal 
inflammation as a trigger for relapse in MS.

An unexpected finding of our study was the marked 
sex-associated difference in SCFA concentrations 
between women and men with significantly lower 
SCFA concentrations in female subjects. Sex-specific 
differences have been described for the intestinal 
microbiota previously [34]. Fecal SCFA concentrations 
have already been subject of clinical studies in different 
fields, e.g. anorexia [29], obesity, diabetes mellitus and 
cardiometabolic disease [30]. Yet, none of these studies 
reported sex-specific differences for fecal SCFA con-
centrations. It might well be that this aspect was not 
explicitly analyzed in these studies.

Jakobsdottir and colleagues reported sex-specific 
differences of blood SCFA concentrations (with lower 
SCFA concentrations in female subjects) in a study 
comparing patients with microscopic colitis and celiac 
disease [35]. Another study did not find sex-specific 
differences when analyzing blood SCFA concentrations 
[36]. As already mentioned, blood and fecal SCFA con-
centrations are not directly comparable.

RRMS patients and control subjects in this study 
were matched for age, but there was a male predomi-
nance in the control group, which represents a poten-
tial confounding factor.

Taken together, the known female predominance 
in MS and the known immunomodulatory effects of 
SCFAs warrant further studies in this field. One might 
hypothesize that low concentrations of SCFA represent 
an additional risk factor for MS and might contribute 
to the higher susceptibility of women compared to men 
in MS. As the observed sex-specific difference in SCFA 

concentrations was independent from MS, also stud-
ies in other conditions that investigate microbiota and 
microbial products should consider sex as a potential 
confounding factor.

Abbreviations
CNS: Central nervous system; EAE: Experimental autoimmune encephalo-
myelitis; MS: Multiple sclerosis; PPMS: Primary progressive multiple sclerosis; 
RRMS: Relapsing remitting multiple sclerosis; SCFA: Short-chain fatty acids; 
SD: Standard deviation; SPMS: Secondary progressive multiple sclerosis; ST: 
Student’s t-test (unpaired); Tregs: Regulatory T cells.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13317-​021-​00149-1.

 Additional file 1: Table S1. Synopsis of all enrolled subjects. 1 Age 
at enrollment in years. 2 Sex. m=male, f=female. 3 disease activ-
ity: mi/mod=mild/moderate, act/ha=active/highly active. 4 Drug: 
Nat=Natalizumab, Dmf=dimethylfumarate, Glat=glatirameracetate, 
ßIFN=betaferones, PIF=pegylated betaferones, Fin=fingolimod, 
/=none. 5 c-reactive protein in blood in mg/l. *= data not available. 6 
fecal calprotectin in µg/g. 7–12 fecal concentration of acetate(Acet)/
propionate(Prop)/butyrate(But)/isobutyrate(Isobut)/valerate(Val)/
isovalerate(Isoval) in mmol/g.

Acknowledgements
The publication fee was covered by the non-profit association neuro-g e.V.

Authors’ contributions
AB conceived essential aspects of the data analyses, performed these analyses 
and drafted the manuscript. MA assisted in creating the study protocol, 
enrolled and examined all subjects (study-related procedures), created a data-
base for analysis, contributed to statistical analysis and revised the manuscript. 
MF and MU created the study protocol, supervised the study and revised the 
manuscript. AS performed laboratory analysis and revised the manuscript. KF 
and SW provided critical feedback to the study design and the manuscript. All 
authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

 Availability of data and materials
The datasets supporting the conclusions of this article are included within the 
article and its Additional file 1.

Declarations

Ethics approval and consent to participate
The study was approved by the local ethics committee (Ethikkommission der 
Ärztekammer des Saarlandes, registration number 81/18). Written informed 
consent was obtained from all participants.

Consent for publication
Not applicable.

Competing interests
The authors state that here is no conflict of interest, financial or otherwise, 
related to the submitted work.

Author details
1 Department of Neurology, Saarland University, Kirrberger Str. 100, 
66421 Homburg, Germany. 2 Klinik für Neurologie, Gesundheitszentrum 
Glantal, Liebfrauenberg 32, 55590 Meisenheim, Germany. 3 Institute 

https://doi.org/10.1186/s13317-021-00149-1
https://doi.org/10.1186/s13317-021-00149-1


Page 8 of 8Becker et al. Autoimmun Highlights            (2021) 12:7 

of Microecology, Herborn, Germany. 4 Neuroscience Unit, Faculty of Medicine, 
Anglia Ruskin University, Chelmsford, Essex, UK. 

Received: 12 November 2020   Accepted: 27 February 2021

References
	1.	 Dobson R, Giovannoni G. Multiple sclerosis—a review. Eur J Neurol. 

2019;26(1):27–40.
	2.	 Kleinewietfeld M, Hafler DA. Regulatory T cells in autoimmune Neuroin-

flammation. Immunol Rev. 2014;259(1):231–44.
	3.	 Melbye P, Olsson A, Hansen TH, Søndergaard HB, Bang OA. Short-chain 

fatty acids and gut microbiota in multiple sclerosis. Acta Neurol Scand. 
2019;139(3):208–19.

	4.	 Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoim-
mune encephalomyelitis (EAE) model of MS: utility for understand-
ing disease pathophysiology and treatment. Handb Clin Neurol. 
2014;122:173–89.

	5.	 Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C et al. Com-
mensal microbiota and myelin autoantigen cooperate to trigger autoim-
mune demyelination. Nature 2011; 479(7374):538–41. https://​www.​
nature.​com/​artic​les/​natur​e10554.​pdf.

	6.	 Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses 
demyelination and enhances remyelination. J Neuroinflammation. 
2019;16(1):165.

	7.	 Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, et al. The short-
chain fatty acid pentanoate suppresses autoimmunity by modulating 
the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun; 
2019;10(1):1–12.

	8.	 Duscha A, Gisevius B, Hirschberg S, Yissachar N, Stangl GI, Eilers E, et al. 
Propionic acid shapes the multiple sclerosis disease course by an immu-
nomodulatory mechanism. Cell. 2020;180(6):1067-1080.e16.

	9.	 Park J, Goergen CJ, HogenEsch H, Kim CH. Chronically elevated levels of 
short-chain fatty acids induce T cell-mediated ureteritis and hydrone-
phrosis. J Immunol. 2016;196(5):2388–400.

	10.	 Luu M, Visekruna A. Short-chain fatty acids: bacterial messengers modu-
lating the immunometabolism of T cells. Eur J Immunol. 2019;49(6):842–
8. https://​doi.​org/​10.​1002/​eji.​20184​8009.

	11.	 Koh A, de Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber 
to host physiology: short-chain fatty acids as key bacterial metabolites. 
Cell. 2016;165(6):1332–45.

	12.	 Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbi-
ome metabolites on immune regulation and autoimmunity. Immunol-
ogy. 2018;154(2):230–8.

	13.	 Hirschberg S, Gisevius B, Duscha A, Haghikia A. Implications of diet and 
the gut microbiome in neuroinflammatory and neurodegenerative 
diseases. Int J Mol Sci 2019; 20(12).

	14.	 Zeng Q, Junli G, Liu X, Chen C, Sun X, Li H, et al. Gut dysbiosis and lack 
of short chain fatty acids in a Chinese cohort of patients with multiple 
sclerosis. Neurochem Int. 2019;129:104468.

	15.	 Park J, Wang Q, Wu Q, Mao-Draayer Y, Kim CH. Bidirectional regulatory 
potentials of short-chain fatty acids and their G-protein-coupled recep-
tors in autoimmune neuroinflammation. Sci Rep. 2019;9(1):1–13.

	16.	 Ayling RM, Kok K. Fecal calprotectin. Adv Clin Chem. 2018;87:161–90.
	17.	 Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender 

K, et al. Fecal markers of intestinal inflammation and intestinal perme-
ability are elevated in Parkinson’s disease. Parkinsonism Relat Disord. 
2018;50:104–7.

	18.	 Mulak A, Koszewicz M, Panek-Jeziorna M, Koziorowska-Gawron E, 
Budrewicz S. Fecal calprotectin as a marker of the gut immune system 
activation is elevated in parkinson’s disease. Front Neurosci. 2019;13:992.

	19.	 Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, 
et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. 
Neurology. 2014;83(3):278–86.

	20.	 Díaz C, Zarco LA, Rivera DM. Highly active multiple sclerosis: an update. 
Mult Scler Relat Disord. 2019;30:215–24.

	21.	 Deutsche Gesellschaft für Neurologie (DGN) e.V. Diagnose und Therapie 
der Multiplen Sklerose, Neuromyelitis Optica Spektrum und MOG-IgG-
assoziierte Erkrankungen (cited 2021 Feb 5). https://​dgn.​org/​wp-​conte​
nt/​uploa​ds/​2020/​09/​200902_​MS-​LL_​Haupt​teil_​Konsu​ltati​onsfa​ssung_​
KKNMS_​202008_​final.​pdf.

	22.	 Fenu G, Lorefice L, Frau F, Coghe GC, Marrosu MG, Cocco E. Induction and 
escalation therapies in multiple sclerosis. Antiinflamm Antiallergy Agents 
Med Chem. 2015;14(1):26–34.

	23.	 Multiple Sklerose e.V. Qualitätshandbuch MS/NMOSD: Empfehlungen 
zur Therapie der Multiplen Sklerose / Neuromyelitis-optica-Spektrum-
Erkrankungen für Ärzte. Kompetenznetz Multiple Sklerose (cited 2021 
Feb 16); 2020. https://​www.​kompe​tenzn​etz-​multi​plesk​lerose.​de/​wp-​
conte​nt/​uploa​ds/​2021/​01/​KKN_​2004_​WEB_​medik​ament​enhan​dbuch.​
pdf.

	24.	 Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an 
expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52.

	25.	 Folstein MF, Folstein SE, McHugh PR. “Mini-mental state.” J Psychiatr Res. 
1975;12(3):189–98.

	26.	 Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity 
scale. Application to patients with multiple sclerosis and systemic lupus 
erythematosus. Arch Neurol. 1989;46(10):1121–3.

	27.	 Beck AT, Ward CH, Mendelsohn M, Mock J, Erbaugh J. An inventory for 
measuring depression. Arch General Psychiatry. 1961;4:561–71.

	28.	 Unger MM, Spiegel J, Dillmann K-U, Grundmann D, Philippeit H, Bürmann 
J, et al. Short chain fatty acids and gut microbiota differ between patients 
with Parkinson’s disease and age-matched controls. Parkinsonism Relat 
Disord. 2016;32:66–72.

	29.	 Berg-Hansen P, Vandvik B, Fagerhol M, Holmøy T. Calprotectin levels in the 
cerebrospinal fluid reflect disease activity in multiple sclerosis. J Neuroim-
munol. 2009;216(1–2):98–102.

	30.	 Nelson SM, Nguyen TM, McDonald JW, MacDonald JK. Natalizumab for 
induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 
2018;8:CD006097.

	31.	 Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the 
human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.

	32.	 Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. 
Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a 
striking depletion of species belonging to clostridia XIVa and IV clusters. 
PLoS ONE. 2015;10(9):e0137429.

	33.	 Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, et al. Multi-
ple sclerosis patients have a distinct gut microbiota compared to healthy 
controls. Sci Rep. 2016;6:28484.

	34.	 Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, 
systemic chronic inflammation and the gut microbiome: the role of sex. J 
Autoimmun. 2018;92:12–34.

	35.	 Jakobsdottir G, Bjerregaard JH, Skovbjerg H, Nyman M. Fasting serum 
concentration of short-chain fatty acids in subjects with microscopic 
colitis and celiac disease: no difference compared with controls, but 
between genders. Scand J Gastroenterol. 2013;48(6):696–701.

	36.	 Chen Z, Wu Y, Shrestha R, Gao Z, Zhao Y, Miura Y, et al. Determination 
of total, free and esterified short-chain fatty acid in human serum 
by liquid chromatography-mass spectrometry. Ann Clin Biochem. 
2019;56(2):190–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.nature.com/articles/nature10554.pdf
https://www.nature.com/articles/nature10554.pdf
https://doi.org/10.1002/eji.201848009
https://dgn.org/wp-content/uploads/2020/09/200902_MS-LL_Hauptteil_Konsultationsfassung_KKNMS_202008_final.pdf
https://dgn.org/wp-content/uploads/2020/09/200902_MS-LL_Hauptteil_Konsultationsfassung_KKNMS_202008_final.pdf
https://dgn.org/wp-content/uploads/2020/09/200902_MS-LL_Hauptteil_Konsultationsfassung_KKNMS_202008_final.pdf
https://www.kompetenznetz-multiplesklerose.de/wp-content/uploads/2021/01/KKN_2004_WEB_medikamentenhandbuch.pdf
https://www.kompetenznetz-multiplesklerose.de/wp-content/uploads/2021/01/KKN_2004_WEB_medikamentenhandbuch.pdf
https://www.kompetenznetz-multiplesklerose.de/wp-content/uploads/2021/01/KKN_2004_WEB_medikamentenhandbuch.pdf

	Short-chain fatty acids and intestinal inflammation in multiple sclerosis: modulation of female susceptibility by microbial products?
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Subjects and methods
	Results
	Demographic and clinical data
	Fecal calprotectin concentrations
	Fecal short-chain fatty acid concentrations

	Discussion
	Acknowledgements
	References




