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Abstract 

The nuclear factor-κB (NF-κB) signaling pathway regulates multiple processes in innate and adaptive immune cells. 
This pathway is involved in inflammation through the regulation of cytokines, chemokines, and adhesion molecules 
expression. The NF-κB transcription factor also participates in the survival, proliferation, and differentiation of cells. 
Therefore, deregulated NF-κB activation contributes to the pathogenesis of inflammatory diseases. Rheumatoid 
arthritis (RA) is classified as a heterogeneous and complex autoimmune inflammatory disease. Although different 
immune and non-immune cells contribute to the RA pathogenesis, fibroblast-like synoviocytes (FLSs) play a crucial 
role in disease progression. These cells are altered during the disease and produce inflammatory mediators, including 
inflammatory cytokines and matrix metalloproteinases, which result in joint and cartilage erosion. Among different 
cell signaling pathways, it seems that deregulated NF-κB activation is associated with the inflammatory picture of RA. 
NF-κB activation can also promote the proliferation of RA-FLSs as well as the inhibition of FLS apoptosis that results 
in hyperplasia in RA synovium. In this review, the role of NF-κB transcription factor in immune and non-immune cells 
(especially FLSs) that are involved in RA pathogenesis are discussed.
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Introduction
Rheumatoid arthritis (RA) is classified as an autoimmune 
inflammatory disease that is characterized by chronic 
inflammation in synovial tissue and results in joint 
destruction [1]. The etiology of RA is not clearly known, 
but a large number of in  vitro and in  vivo studies have 
implied that fibroblast-like synoviocytes (FLSs) in the 
synovial intimal lining play a key role in RA pathogenesis. 
It has been confirmed that FLSs are directly responsible 
for joint damage by perpetuating inflammation and driv-
ing autoimmunity. The joint lining consists of two ana-
tomical compartments: the intimal lining layer and the 
sub-lining layer. Macrophage-like synovial cells (MLSs) 
and FLSs are two major cell types that cover the intimal 

lining of the synovium. Both layers display remarkable 
changes in RA. Hyper-cellularity caused by the increased 
number of both mentioned cell types is a typical change 
that occurs before clinical manifestation [2]. Two-thirds 
of the resident synoviocytes are FLSs, which are consid-
ered the primary effectors of cartilage and bone destruc-
tion because of their inherent invasive properties [3]. In 
hyperplastic synovium, the loss of protective properties 
like lubricin secretion and changes in the protein-binding 
characteristics of the cartilage surface result in enhanced 
FLS adhesion and promoted invasion [4]. Despite the 
genotoxic synovial environment of RA, completed apop-
tosis of FLSs is rare. The reason would be related to the 
limited ability of tumor-suppressor gene p53, increased 
expression of anti-apoptotic proteins B cell lymphoma 2 
(BCL-2) and myeloid cell leukemia 1 (Mcl-1), and dys-
regulation of signal transduction pathways that regulate 
FLS survival, especially nuclear factor-κB (NF-κB) path-
way [5]. Many studies have indicated the importance of 
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deregulated NF-κB activation in the pathogenesis of sev-
eral autoimmune-based diseases, including RA.

NF-κB proteins constitute a family of inducible tran-
scription factors which regulate many genes involved in 
different immune-inflammatory responses [6]. This fam-
ily consists of NF-κB1 (p50), NF-κB2 (p52), RelA (p65), 
RelB, and c-Rel, which contribute to the transcription of 
target genes by forming different types of heterodimers. 
The most current heterodimers are p50/RelA, called 
classic NF-κB, and p50/c-Rel that binds to distinct sites 
of DNA (NF-κB-dependent promoters) and mediates 
inflammatory responses [7, 8]. NF-κB activation is regu-
lated by two major signaling pathways, canonical and 
non-canonical pathways. A variety of stimuli, including 
cytokines, growth factors, pattern recognition recep-
tors (PRRs), T cell receptors (TCRs), and B cell recep-
tors (BCRs), activate the canonical pathway of NF-κB. 
Members of the TNF receptor superfamily (TNFSF), 
such as lymphotoxin-β receptor (LTβR), CD40, receptor 
activator of nuclear factor κ B (RANK), and B-cell acti-
vating factor receptor (BAFF-R), activate the non-canon-
ical pathway of NF-κB [9, 10]. The inactive cytoplasmic 
form of NF-κB remains latent, and its translocation to 
the nucleus is inhibited by an inhibitory protein called 
IκB. The IκB kinase (Iκκ) complex consists of Iκκα, Iκκβ, 
and a regulatory subunit named NF-κB essential modu-
lator (NEMO) or Iκκγ [9]. Both Iκκα and Iκκβ are able 
to phosphorylate IκB, which leads to IκB ubiquitination 
and proteasomal degradation [11]. The phosphorylation 
of Iκκα and its effect on p100 (a larger precursor protein 
of p52) phosphorylation (resulting in p52 generation) are 
known as essential events for NF-κB activation through 
the non-canonical pathway. Moreover, the NF-κB-
inducing kinase (NIK) can activate the non-canonical 
pathway through p100 processing. The canonical path-
way is activated by Iκκβ phosphorylation that results in 
Iκβ phosphorylation and degradation [12]. It seems that 
the canonical NF-κB pathway is involved in most aspects 
of immune responses, but the non-canonical pathway is 
supposed to be an alternative axis that contributes with 
the canonical pathway to regulate the specific functions 
of adaptive immune responses [9]. The NF-κB signaling 
pathway contributes to the regulation of many genes that 
are involved in inflammation, immune responses, and 
cell proliferation and survival [13]. Given the role of the 
NF-κB pathway in these processes, it is not surprising 
that NF-κB signaling is one of the most critical pathways 
in chronic inflammatory diseases.

Synovial biology in rheumatoid arthritis
Joint inflammation, which is a result of interactions 
between synovial fibroblasts, immune cells, and media-
tors, leads to articular destruction, joint erosion, and 

disability. Cytokine production from different cell pop-
ulations in RA synovium has a significant role in RA 
pathogenesis [14]. Cell populations have two types of 
interaction: 1. through cytokines and other secreted 
mediators, and 2. direct cell–cell interaction.

Among different cell populations, dendritic cells (DCs), 
synovial macrophages, synovial fibroblasts, and infiltrat-
ing T lymphocytes are the most common and abundant 
cells in RA synovium. CD4 + T-cell subsets (T helper 
cells) contribute crucially to RA pathogenesis by secret-
ing a wide range of pro-inflammatory cytokines and 
chemokines. Furthermore, activated CD4 + T cells can 
stimulate synovial fibroblasts, monocytes, and mac-
rophages to produce inflammatory cytokines such as 
TNF-α, IL-1, and IL-6 [15].

Studies have shown that together with other subsets 
of CD4 + T cells such as T helper 1 (Th1) cells, T helper 
17 (Th17) cells play a crucial role in advancing synovial 
inflammation during RA development [16, 17]. It has 
been well documented that the imbalance between bone 
resorption and bone formation can result in bone erosion 
[18]. Th17 cells can mediate osteoclastogenesis through 
interleukin 17 (IL-17) secretion. The activation of Th17s 
can also result in the increased activity of B cells, mac-
rophages, and neutrophils [19]. Furthermore, it has been 
shown that IL-17 can induce the production of interleu-
kin 6 (IL-6) and interleukin 8 (IL-8) by RA-FLSs [20].

Autoantibodies like anticitrullinated protein/peptide 
antibodies (ACPAs) are detected before the onset of 
rheumatoid arthritis. The presence of pro-inflammatory 
mediators (like IL-8) and cellular stress in RA synovium 
trigger the expression of protein arginine deiminase 
(PAD) enzymes and citrullinated proteins by FLSs, which 
sensitizes FLSs to the effects of ACPAs, which can pro-
mote FLS migration [21].

Moreover, FLSs can produce several inflammatory 
mediators such as IL-1, 4, 6, 8, 10, 12, 13, 15, 17, 18, 21, 
interferon-gamma (IFN-γ), tumor necrosis factor-alpha 
(TNF-α), and transforming growth factor-beta (TGF-β), 
all of which have crucial roles in mediating inflammation 
[3].

Myeloid and plasmacytoid DCs, the major subtypes 
of dendritic cells, play pivotal roles in the initiation of 
joint inflammation [22]. DCs are increased in both syno-
vial fluid and synovial tissue of RA patients compared to 
osteoarthritis patients [23]. These cells play an essential 
role in the initiation of antigen-specific T-cell responses 
and the establishment of inflammation. Dendritic cells 
also produce inflammatory cytokines such as TNFα, IL-1, 
and IL-6, which perpetuate rheumatoid synovitis [24].

It has been shown that B cells play important roles in 
RA pathogenesis. The number of autoreactive B cells in 
the peripheral blood of RA patients is 3.4-fold higher 
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compared to healthy controls [25]. It has been reported 
that B cell depletion results in reduced joint tenderness 
and swelling in RA patients. However, recurrence of the 
symptom was seen after B cell regeneration [26, 27]. In 
RA synovial fluid and tissue, memory B cells spontane-
ously produce an increased amount of RANKL compared 
to memory B cells in healthy individuals [28, 29]. B cell 
precursors are considered as the main producer of osteo-
protegerin (OPG), a soluble decoy receptor which inhib-
its osteoclastogenesis [30]. B cells also secrete a wide 
range of cytokines, including granulocyte-colony stimu-
lating factor (G-CSF), granulocyte–macrophage colony-
stimulating factor (GM-CSF), TGF-β, and IL-1, 4, 6, 7, 8, 
10, and 12 [31].

Cell–cell interactions in RA synovium
Cell–cell contact between T cells and synovial antigen-
presenting cells (APCs) has been recently considered as a 
potential therapeutic target for RA treatment. There is a 
close interaction between immune cells and resident cells 
of RA synovium such as FLSs.

Dendritic cells maintain and perpetuate chronic 
inflammation in RA synovium by presenting arthrito-
genic antigens to adaptive immune components. Mye-
loid DCs (mDCs) express interleukin 23 (IL-23), which 
promotes the expansion of Th17 cells. An interesting 
fact about mature mDCs is that the grade of inflamma-
tion increases with an increase in the number of mature 
mDCs [22]. In addition to playing the role of APC, den-
dritic cells secrete cytokines including interleukin 12 
(IL-12), IL-17, IL-23, and interleukin 27 (IL-27), which 
induce polarized Th1 responses. Furthermore, DCs can 
activate FLSs (through IL-17 secretion) in order to main-
tain chronic inflammation in RA synovium [24].

It has been shown that FLSs are able to present anti-
gens to T cells through a major histocompatibility com-
plex (MHC) II-restricted mechanism and initiate T-cell 
responses in RA synovium. Increased expression of 
activation markers such as CD25 and CD69 as well as 
inflammatory cytokines including IFN-γ, TNF-α and 
IL-17 was shown in T cells which were co-cultured with 
FLSs [32]. Moreover, phorbol 12-myristate 13-acetate 
(PMA)-activated T cells (co-cultured with FLSs) could 
activate FLSs through the interaction between leukocyte 
functional antigen-1 (LFA–1/CD11aCD18) on T cells 
and intercellular adhesion molecule-1 (ICAM-1/CD54) 
on FLSs. This independent antigen interaction stimu-
lates interleukin 1 beta (IL-1β) transcription in FLSs and 
results in IL-1 secretion [33]. In addition, it has been 
revealed that all different subsets of resting T cells are 
able to activate FLSs, resulting in the secretion of inflam-
matory mediators. Furthermore, activated FLSs showed 
increased expression of IL-6 and IL-8 at the messenger 

ribonucleic acid (mRNA) and protein levels, which is 
important in joint inflammation [24, 34]. RA T cells 
(which present features of premature senescence) highly 
express the CX3C chemokine receptor 1 (CX3CR1 or 
fractalkine (FKN) receptor) that interacts with FKN on 
FLSs. This interaction promotes the proliferation of FLSs 
and enhances T cell activation and surveillance [35, 36].

The role of the NF‑κB pathway in immune and non‑immune 
cells
It has been shown that NF-κB is expressed ubiquitously 
in almost all cells, and the dysregulation of NF-κB is cor-
related with the pathogenesis of different diseases such as 
cancer and autoimmune diseases, including RA [37].

Dendritic cells differentiation, activation, and survival 
are deeply connected with the NF-κB signaling path-
way [38]. NF-κB activation regulates both inflammatory 
and anti-inflammatory responses through the activation 
of DCs. Canonical NF-κB activation by CD40 ligation 
on DCs leads to the early production of inflammatory 
cytokines, while non-canonical NF-κB activation induces 
the expression of anti-inflammatory enzyme indoleamine 
2,3-dioxygenase (IDO), which promotes the suppressive 
function of regulatory T cells [39].

It has been shown that the non-canonical NF-κB path-
way in DCs plays a role in providing co-stimulatory sig-
nals to CD4 + T cells and cross-priming of CD8 + T 
cells [40]. Overall, the non-canonical NF-κB pathway 
plays a role in both inflammatory and anti-inflammatory 
responses in RA synovium.

It has been reported that the NF-κB pathway is impor-
tant for B-cell development, maintenance, and function 
[41]. IKKα in B cells is required for the germinal center 
formation and for producing long-lived immunoglobin 
titers, but not for primary antibody production [42]. 
Moreover, NIK promotes B-cell proliferation as well as 
B-cell survival by providing them with survival signals. 
Chiefly, the non-canonical NF-κB pathway plays a crucial 
role in the survival, differentiation, and antibody produc-
tion in B cells and plasma cells, which perpetuate and 
maintain chronic inflammation in RA synovium [43, 44].

Components of the canonical NF-κB pathway, espe-
cially c-Rel and RelA, play important roles in T cell recep-
tor (TCR) signaling and following T cell activation [45]. 
Deregulated NF-κB signaling can result in unwanted T 
cell activation, which can cause inflammatory and auto-
immune responses [46]. Both c-Rel and RelA are involved 
in Th17 generation by inducing the retinoid-related 
orphan receptor (ROR) γT [47, 48]. Not only is c-Rel 
important for the development of Th1 cells, but it also 
participates in the induction of forkhead box P3 (Foxp3), 
which is called the regulatory T (Treg) master transcrip-
tion factor [49, 50].
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The non-canonical NF-κB pathway has a dual role in T 
cell biology. Although NIK is required for Th1 and Th17 
generation, which is in favor of RA development, it has 
been shown that NIK is also essential for Treg cell gen-
eration, which can inhibit inflammation in RA synovium 
[51, 52].

RA synovial fibroblasts are well-known as cells that 
perpetuate inflammation in synovium through the secre-
tion of pro-inflammatory cytokines and growth fac-
tors which stimulate neovascularization [2]. It had been 
shown that the components of the non-canonical NF-κB 
pathway, such as NIK, are essential for NF-κB-mediated 
LTβR activation in RA-FLSs [53]. RA-FLSs stimulation 
with the tumor necrosis factor superfamily 14 (LIGHT) 
leads to the upregulation of matrix metalloprotein-
ases (MMPs) and adhesion molecules [54]. It has been 
reported that stimulating RA-FLSs with CD40L resulted 
in the increased expression of C-X-C motif chemokine 
12 (CXCL12), which promotes angiogenesis, and the 
enhanced migration of monocytes/macrophages, B cells, 
and T cells to inflammatory synovium by activating the 

non-canonical NF-κB pathway [53]. CD40 ligation can 
also induce RANKL expression through NF-κB activa-
tion and enhanced osteoclast formation [55] (Fig. 1).

NF‑κB pathway and Treg cells in RA
Regulatory T cells (Treg) play important roles in immune 
regulation. Different studies have reported different 
Treg cell counts in the peripheral blood of RA patients 
because of differences in the definition of CD4+ CD25+ 
cells. However, most studies have demonstrated that the 
counts of Treg cells, which are functionally impaired, 
were significantly increased in RA synovial fluid [56]. 
Tregs in RA synovial fluid fail to suppress the prolif-
eration of effector CD4+ cells or the production of 
inflammatory cytokines such as TNF-α and IFN-γ by 
monocytes and CD4+ T cells [57].

NF-κB proteins, especially c-Rel, p65, and NIK, have 
important roles in the development of Tregs. It has 
been reported that CD4+ CD25high cells, which express 
FOXP3, play a suppressive role, and mutations in FOXP3 
lead to serious autoimmune disorders, such as immune 

Fig. 1  NF-κB activation perpetuates chronic inflammation by targeting genes involved in inflammation during RA development. NF-κB activation 
in innate and adaptive immune cells can be responsible for inflammatory responses and perpetuating chronic inflammation in RA synovium. NF-κB 
activation in T cells results in T cell signaling, activation, and differentiation in inflammatory T cells which produce inflammatory cytokines and 
maintain inflammation in rheumatoid synovium. Impaired Treg function in RA patients can be related to Foxp3 downregulation and is due to the 
overexpression of inflammatory cytokines such as TNF-α in the RA microenvironment. Moreover, B cell proliferation and auto-antibody production is 
deeply connected with activated NF-κB members. In terms of innate immune regulation, deregulated NF-κB activation in dendritic cells can cause 
the induction of cytokines which promote inflammatory T cell differentiation. These repeating cycles can exacerbate disease severity. NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells), RA (Rheumatoid arthritis), Foxp3 (Forkhead box P3), TNF-α (Tumor necrosis factor alpha)
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dysregulation, polyendocrinopathy, enteropathy, and 
X-linked (IPEX) [50]. Increased TNF-α expression in 
RA synovium results in Foxp3 downregulation in Tregs 
through the TNF type II receptor. Foxp3 downregula-
tion affects the suppressive function of Tregs to inhibit 
effector T cell proliferation and cytokine secretion [58]. 
Formation of a Foxp3-specific enhanceosome which is 
promoted by c-Rel and p65 is essential for the develop-
ment of Tregs [50]. In  vitro studies have demonstrated 
that c-Rel and p65 deficiency results in the blockade of 
Foxp3 gene expression which inhibits Treg differentia-
tion. However, the co-expression of c-Rel and p65 leads 
to increased activity of the Foxp3 promoter [59]. It has 
been shown that c-Rel can regulate Treg differentiation 
indirectly through interleukin 2 (IL-2), while there is a 
partial defect in IL-2 production in cultured c-Rel-defi-
cient T cells [60]. Furthermore, c-Rel is not only associ-
ated with Tregs differentiation and development, but is 
also required for the homeostatic proliferation of periph-
eral Tregs. It seems, however, that c-Rel does not affect 
the function of Tregs, because c-Rel-deficient Tregs can 
equally suppress T cell functions compared to the wild 
type of Tregs [61].

Several co-stimulatory molecules of the TNF receptor 
family which are expressed by Tregs, including tumor 
necrosis factor receptor 2 (TNFR2); tumor necrosis fac-
tor receptor superfamily, member 4 (TNFRSF4; CD 
134, OX40); TNFRSF9 (CD137, 4-1BB); and TNFRSF18 
(GITR), can activate the non-canonical NF-κB pathway 
through the accumulation of NIK [62]. There is contro-
versy regarding the stimulatory or inhibitory effects of 
these receptors on Treg function. Although most stud-
ies have implied that the mentioned receptors suppress 
the function of Tregs [63–65], there are instances which 
indicate that these receptors enhance the number and/
or suppressive function of Tregs [66–68]. It has been 
demonstrated that constitutive NIK expression in all T 
cells results in fatal multi-organ autoimmunity, which 
is related to the impaired suppressive function of Tregs 
and hyperactive effector T cell responses. A recent 
study showed that constitutive NIK expression leads to 
decreased expression of various important microRNAs 
and genes which are related to Treg homeostasis and 
its suppressive function. Furthermore, an in  vivo study 
indicated that NIK transgenic Tregs may contribute to 
inflammation by losing their inhibitory function and pro-
ducing inflammatory cytokines [62].

NF‑κB pathway in RA‑FLSs
Hyperproliferation of FLSs
FLSs are considered hyperproliferative fibroblast cells 
with cancerous features. Several factors affect FLS mito-
sis and drive FLS proliferation. In  vitro studies have 

indicated that basic fibroblast growth factor (bFGF) and 
platelet-derived growth factor (PDGF), which are highly 
expressed by FLSs, induce FLS proliferation [69]. Differ-
ent cytokines such as TGF-β and activins, members of the 
TGF-β superfamily, are overexpressed in RA synovium 
and stimulate FLS proliferation [70, 71]. Moreover, muta-
tions in the oncogene proteins and proteins involved in 
cell cycle regulation in RA FLSs have been documented 
[72–74]. Immunohistochemistry analysis has indicated 
the increased expression of NF-κB1 (p50) and RelA (p65) 
in RA synovial intimal lining cells compared to normal 
synovium [75]. NF-κB activation can promote the pro-
liferation of RA-FLSs and the following hyperplasia that 
result in pannus formation and the consequent exacerba-
tion of symptoms. NF-κB acts as a positive regulator of 
the cell cycle in fibroblasts and myoblasts by inducing the 
expression of cyclin D1 and c-Myc [76]. Moreover, bFGF 
and PDGF treatment have been shown to activate the 
NF-κB pathway, which results in c-Myc induction and 
cell proliferation. Although c-Myc has positive effects on 
cell growth and is overexpressed in RA synovium, it can 
cause cell apoptosis in the absence of survival signals that 
are provided by growth factors like PDGF. NF-κB activa-
tion leads to increased c-Myc expression as a stimulatory 
signal for cell proliferation as well as providing anti-apop-
totic signals that prevent the cytotoxic effect of c-Myc in 
RA-FLSs. Thus, NF-κB pathway activation is involved in 
synovial hyperplasia in RA by inducing increased prolif-
eration [76].

Decreased apoptosis
Programmed cell death (apoptosis) is a regulated cel-
lular suicide mechanism which results in the removal of 
undesired cells from tissues. Although RA-FLSs express 
death receptors, they are relatively resistant to pro-
apoptotic molecules, including TNF, Fas ligand (Fas-L), 
and TNF-related apoptosis-inducing ligand (TRAIL 
([77]. Increased expression of proteins with anti-apop-
totic effects like Bcl-2, sentrin-1, Fas-associated death 
domain-like IL-1 beta-converting enzyme-inhibitory 
protein (FLIP), Mcl-1, and protein kinase B (Akt) causes 
apoptosis resistance [78]. Several studies have indicated 
that despite frequent DNA breaking in RA synovium, 
the morphological signs of apoptosis are extremely rare 
in RA-FLSs compared to trauma or osteoarthritis (OA)-
FLSs [79].

A variety of stimuli such as radiation, TNF-α, and 
chemotherapeutic agents can induce NF-κB activa-
tion. NF-κB activation delivers anti-apoptotic signals in 
different cell types by inducing the expression of anti-
apoptotic genes such as the cellular inhibitor of apopto-
sis protein-1 (c-IAP1) and c-IAP2, tumor necrosis factor 
receptor-associated factor 1 (TRAF1) and TRAF2, B-cell 
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lymphoma-extra-large (Bcl-xL), the Bcl-2 homologs A1/
Bfl-1, X-linked inhibitor of apoptosis protein (XIAP), and 
immediate early response gene X-1 (IEX-1).

The transcriptional activity of the NF-κB-p65 subunit 
(which plays a crucial role in inflammatory and autoim-
mune diseases) is regulated by phosphorylation and acet-
ylation. Phosphorylation of p65 Ser536 can inhibit p53 
activity, resulting in FLS resistance to apoptosis [80, 81]. 
It has been reported that sirtuin 1 (SIRT1) is downregu-
lated in both FLSs and RA synovium. Overexpression of 
SIRT1 can significantly inhibit FLS proliferation, migra-
tion, and invasiveness. SIRT1 overexpression can also 
suppress the NF-κB pathway by reducing p65 expression, 
p65 phosphorylation, and acetylation in FLSs [82]. In 
addition, phosphatidylinositol 3-kinase/Akt (PI3K/Akt) 
activation is typically detected in RA-FLSs and could 
potentially activate NF-κB and inhibit Fas-induced apop-
tosis [78]. Several studies have pointed out that overex-
pression of FLIP in RA synovial tissue can be involved in 
synovial fibroblasts survival by inhibiting Fas-mediated 
apoptosis. Increased expression of FLIP is directly cor-
related with NF-κB activation [83, 84]. Thus, NF-κB 
inhibition or FLIP downregulation in RA fibroblasts can 
promote apoptosis via the Fas-FasL pathway [85]. Gener-
ally, the NF-κB pathway, which is highly activated in RA 
and plays a crucial role in providing strong pro-survival 
and anti-apoptotic signals to FLSs, induces FLS resist-
ance to apoptosis.

Cytokine production
FLSs secrete a wide range of mediators including pro-
inflammatory cytokines, growth factors, MMPs, and 
angiogenic factors. Analyses of RA synovial tissue have 
indicated the high mRNA and protein expression of dif-
ferent inflammatory cytokines, including IL-1, IL-6, 
TNF-α, GM-CSF, G-CSF, and TGF-β. Among inflamma-
tory cytokines, IL-1 and TNF-α play important roles in 
RA pathogenesis [86].

It is clear that the constitutive activation of the NF-κB 
pathway in RA is important for maintaining chronic 
inflammation. IkB kinase (IKK) mediates the majority 
of inflammatory signaling pathways. Inhibition of IKK 
in FLSs by IMD-0560, IκB kinase β inhibitor, results in 
suppression of IkBα phosphorylation that is induced 
by TNF-α. Therefore, IMD-0560 is able to suppress the 
production of inflammatory cytokines by FLSs, includ-
ing monocyte chemoattractant protein-1 (MCP-1), IL-6, 
and IL-8 [87]. Although NF-κB proteins (p50 and p65) 
are detected in the nuclei of intimal synoviocytes in both 
RA and OA, NF-κB activation is much greater in RA 
than in OA due to the phosphorylation and degradation 
of IkBα in RA synoviocytes. In  vitro treatment of FLSs 
with IL-1 and TNF-α leads to NF-κB signaling activation 

and increased cytokine production through the activa-
tion of the IKK complex. In addition, it has been demon-
strated that the kinase activity of both IKKα and IKKβ is 
increased over tenfold within minutes of cytokine expo-
sure [88].

Activation of IKKε, a member of the NF-κB family, in 
RA-FLSs of the synovial intimal lining results in JUN 
phosphorylation and induction of MMPs expression 
(independent of c-Jun N-terminal kinase (JNKs)). IKKε 
and serine/threonine-protein kinase TBK1 (TANK-bind-
ing kinase 1) are homologous to IKKα and IKKβ and reg-
ulate interferon-related responses in FLSs [89]. RA-FLSs 
can produce type I interferons, which have pro-inflam-
matory or anti-inflammatory roles, in response to stimu-
lation of Toll-like receptors (TLRs) [90].

IKK2 is known as a central kinase for NF-κB activation, 
and the blockade of IKK2 inhibits the effects of IL-1 and 
TNF-α on the induction of IL-6, IL-8, and intercellular 
adhesion molecule-1 (ICAM-1) in FLSs [88]. It has been 
shown that interleukin 32 (IL-32) and IL-1 family mem-
bers such as IL-18 and interleukin 33 (IL-33) are also pro-
duced by cytokine-stimulated FLSs [91].

Taken together, activated NF-κB key components in 
RA-FLSs contribute to pannus formation and persistent 
inflammation in synovial tissue through the induction of 
inflammatory mediators and production of destructive 
enzymes.

Invasiveness
Invasiveness is one of the prominent features of RA-FLSs. 
It is related to their capacity to produce inflammatory 
cytokines and MMPs. Cartilage erosion by FLSs develops 
through multiple processes which include attachment to 
the cartilage and synthesis of enzymes that degrade the 
extracellular matrix (ECM). FLSs interact with the com-
ponents of cartilage ECM through the over-expression of 
several members of the β1 integrin family. Fibronectin-
derived peptides and integrins induce the expression of 
MMPs [92]. It has been shown that other than integrins, 
ICAM-1 and particularly vascular cell adhesion molecule 
1 (VCAM-1) (unique to FLSs) are overexpressed in cul-
tured FLSs, which are able to induce MMP expression 
[93]. MMPs, including stromelysin-1 (MMP-3) and col-
lagenases (MMP-1, MMP-13), play an important role 
in RA development. RA-FLSs secrete different types of 
MMPs including MMP-1, 2, 3, 8, 9, 10, 11 and 13 [86, 94–
98]. Although unstimulated FLSs express MMPs at low 
levels, the expression of these enzymes can be induced 
by inflammatory cytokines including IL-1 and TNF-α 
and growth factors such as bFGF, PDGF, and epidermal 
growth factor (EGF). Moreover, IL-17 can synergistically 
enhance the effects of IL-1 and TNF-α and increase the 
expression of MMPs [99]. The expression of MMP-2, 
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MMP-3, and MMP-9, which degrade non-collagen 
matrix components of the joint, is elevated in arthritis 
[100, 101].

NF-κB activation can potentially induce MMP-1, 
MMP-3, and MMP-9 gene expression due to the fact that 
the promoters of these genes have canonical binding sites 
for NF-κB. Although the promoter of MMP-13 does not 
contain an NF-κB binding site, inhibiting NF-κB signal-
ing blocks the expression of MMP-13 (Fig. 2) [102, 103].

Conclusion
Several lines of research have demonstrated that the 
pathogenesis of RA is heterogeneous, complex, and 
correlated with different signal transduction pathways. 
NF-κB and its family members are inducible transcrip-
tion factors which regulate cell survival by pro- and anti-
apoptotic-related gene regulation. In addition, NF-κB 
activation regulates various pro-inflammatory genes, 
such as those encoding chemokines, cytokines, and genes 
that are involved in inflammasome regulation. FLSs, 
which play a crucial role in maintaining chronic inflam-
mation in the RA microenvironment, are hyperprolif-
erative and invasive cells. NF-κB activation in RA-FLSs 

not only enhances the production of pro-inflammatory 
cytokines and matrix metalloproteinases, but also pro-
motes proliferation and inhibits apoptosis, which leads 
to disease progression. In addition, T cell, B cell, and 
DCs survival, differentiation, and activation are deeply 
associated with NF-κB pathway activation. In immune 
cells, NF-κB activation is not only required for CD8 + T 
cells cross-priming, supplying co-stimulatory signals 
to CD4 + T cells and autoantibody production by B 
cells, but also increases the production of inflammatory 
cytokines and growth factors.

NF-κB members have paradoxical roles in the genera-
tion of Treg cells. Some NF-κB members, such as c-Rel, 
are essential for Treg development because of their par-
ticipation in the formation of the Foxp3-specific enhan-
ceosome and induction of Foxp3 expression, while 
deletion of the IKK-negative regulator (CYLD) or con-
stitutive expression of active IKKβ is in favor of Treg 
development.

Fig. 2  NF-κB activation in fibroblast-like synoviocytes regulate inflammatory responses in RA. Fibroblast-like synoviocytes play an important 
role in RA pathogenesis. NF-κB activation in FLS regulates different cell signaling processes, including decreasing FLS apoptosis by increasing 
the expression of anti-apoptotic genes and the inhibition of P53 and Fas as apoptosis regulatory molecules. NF-κB activation can also affect FLS 
proliferation and lead to FLS hyperplasia in RA synovium. Apart from this, RA-FLSs produce some growth factors which result in hyperplasia, 
inflammatory mediators such as inflammatory cytokines that maintain chronic inflammation in synovium, and different adhesion molecules 
which help further FLS migration to inflamed sites and increase their invasive characteristics. RA (Rheumatoid arthritis), NF-κB (nuclear factor 
kappa-light-chain-enhancer of activated B cells), FLS (Fibroblast-like synoviocyte), Fas (CD95)
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