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Deciphering the role of DNA methylation in multiple sclerosis:
emerging issues
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Abstract Multiple sclerosis (MS) is an autoimmune

inflammatory and neurodegenerative disease of the central

nervous system that involves several not yet fully eluci-

dated pathophysiologic mechanisms. There is increasing

evidence that epigenetic modifications at level of DNA

bases, histones, and micro-RNAs may confer risk for MS.

DNA methylation seems to have a prominent role in the

epigenetics of MS, as aberrant methylation in the promoter

regions across genome may underlie several processes

involved in the initiation and development of MS. In the

present review, we discuss current understanding regarding

the role of DNA methylation in MS, possible therapeutic

implications and future emerging issues.
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Epigenetics in MS: convergence between genetic
and environmental factors

Multiple sclerosis (MS) is a complex inflammatory and

degenerative disease of the central nervous system (CNS)

that involves several not yet fully elucidated pathophysio-

logic mechanisms and evidences of implication of both

environmental and genetic factors [1]. Epigenetics may be

the bridge between genotypes, environmental exposures,

and phenotypes.

Epigenetic modifications are heritable, reversible alter-

ations in gene expression, which do not affect gene

sequence. They depend on environmental and biological

conditions, resulting in different cell responses [2]. The

main epigenetic mechanisms consist of DNA methylation,

histone alteration, and micro-RNAs. DNA methylation

aims to prevent transcription factors from binding to gene

promoter, thus silencing gene expression. This procedure is

achieved by DNA methyl transferases (DNMTs), which

convert cytosine of CpG islands in gene promoters into

5-methylcytosine. Histone alterations include several pro-

cedures that regulate transcription, such as acetylation and

phosphorylation. Acetylation of the N-terminal tail of a

histone leads to decompression of chromatin and upregu-

lates transcription [3]. Micro-RNAs are single stranded,

small in nucleotide amount RNAs, which do not encode

any proteins. They can affect gene expression, acting after

gene transcription and their expression depends on the

interaction with the other two mechanisms [4]. Micro-

RNAs silence gene expression by improper binding to a

specific or to multiple mRNA sequences into a ribonucle-

oprotein called RISC (RNA-associated silencing complex).

Even the same mRNA sequence can be regulated by sev-

eral micro-RNAs bound up to it [5]. Epigenetic mecha-

nisms seem to influence the development of numerous
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diseases, such as systemic lupus erythematosus (SLE),

cancer, rheumatoid arthritis (RA), and diabetes melitus

type 1 (T1DM) [6–8].

In MS, a great effort of collaborative studies has been

made in the last decade to define the genetic architecture of

MS. These efforts have yielded, till now, 110 genetic risk

factors of MS [9]. However, these variants along with HLA

loci can account only for about 27 % of the apparent MS

heritability [10], highlighting the possible role of interac-

tions between environmental and genetic factors [11]. In

addition, genetic factors are unable to explain the low MS

concordance rate between monozygotic twins only by

themselves [12]. Moreover, ‘‘gender bias,’’ with a higher

prevalence of MS in females could be attributed to defec-

tive regulation of X chromosome through epigenetic

effects, or to the parent-of-origin effect, where descendants

of diseased mothers have greater chance of developing MS

than offspring of diseased fathers, caused probably by

epigenetic mechanisms such as genome imprinting [13].

In addition, epigenetics may be the link between envi-

ronmental factors and susceptibility to MS. The specific

MS geographical distribution and the results from migra-

tion studies are believed to epigenetically modify MS

susceptibility [14]. Low serum vitamin D, which influences

MS course and disability, seems to affect the expression of

histone-modifying enzymes [15]. Smoking, which may be

associated with MS in a dose dependent pattern [16], has

been linked to DNA methylation and other epigenetic

modifications [17]. Finally, epigenetic control of human

endogenous retroviral family type W (HERV-W) and

Epstein–Barr virus (EBV) elements that are present in the

human genome may be critical in the development and

evolution of MS [18, 19].

DNA methylation

DNA methylation is assumed to be among the best

described epigenetic mechanisms, first referred to its cor-

relation with cancer, regulating the expression of oncoge-

nes and tumor suppressor genes [20]. However, over the

past decade, a huge effort has been made to explain its role

in immunity and autoimmunity. To begin with, DNA

methylation is an essential process for normal cell devel-

opment, proliferation, and genome integrity [21]. It is

mediated by a number of enzymes called DNA methyl-

transferases (DNMTs), the most important of which are

DNMT1, DNMT3a, and DNMT3b. These enzymes are

responsible for the positioning of a methyl group at the 50-
carbon position of a cytosine converting it into 50-
methylcytosine. The first one is associated with the

preservation of methylation to the daughter strands during

every replication cycle, while the other two enzymes set up

methylation de novo at the early developmental stages of

cell life. DNA methylation mainly occurs at regions where

a guanine accompanies the cytosine, forming a dinu-

cleotide. Hundreds of these dinucleotides are found repet-

itively in gene promoters, as CpG islands.

Hypermethylation of these sites leads to silencing of the

gene, by not allowing transcription factors to bind to the

gene promoter, while hypomethylation to the transcription

and usually to the expression of the subjected gene [22].

The demethylation of those regions can easily occur in

either a passive or in an active way. The passive one is

favored during DNA replication, while the active one is

achieved by other enzymes not particularly during cell

division. Methylation patterns usually pass to the next

generation through meiosis and also form the chromatin

structure, affecting cell function [23].

The role of DNA methylation in MS

The majority of attempts to identify changes in DNA

methylation across the genome can be distinguished into

two approaches: candidate-gene approach, where specific

genetic loci are selected and examined for differences in

DNA methylation and through genome-wide methylation

analysis. Also combinations of these techniques can also be

applied [24]. The effect of DNA methylation has been

studied in mouse models of MS, especially in mice with

experimental autoimmune encephalomyelitis (EAE), which

have been proved very promising in extrapolating these

results to human MS patients [25]. Quite a few studies have

also analyzed the effect of aberrant DNA methylation on

MS phenotypes, using various approaches in sample size,

definitions, methodology, and statistical approach, and they

have come upon various results. These studies are pre-

sented in Table 1.

Peptidylargininedeiminase 2 (PAD2) and 4 (PAD4) are

enzymes expressed in the brain as well as in peripheral

blood cells. Upregulation of PAD2 and PAD4 genes may

contribute to deamination of myelin basic protein (MBP)

and to consequent loss of immune tolerance in MS patients

[26, 27]. PAD2 gene hypomethylation at a rate of 30 % of

the cytosines has been reported in the white matter of MS

patients, due to increased activity of DNA demethylase

[28]. Moreover, authors suggested that the observed

demethylation is tissue specific (in the white matter) and a

characteristic feature only of MS. They observed no sig-

nificant hypomethylation in the thymus gland of MS

patients or in the white matter of patients with other neu-

rological diseases (Alzheimer’s, Huntington’s, and

Parkinson’s diseases) [28]. However, PAD2 gene has also

been found to be upregulated and overexpressed in

peripheral blood mononuclear cells (PBMCs), an
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Table 1 Baseline characteristics of studies about DNA methylation and MS

Author

[references]

Tissue Sample Type of study Results

Mastronardi

[28]

Cortical white

matter of

brain and

thymus

Normal controls (n = 4) MS patients

(n = 12)

Candidate-gene

DNA

methylation

approach

30 % demethylation in PAD2 gene

promoter only in the white matter of MS

patients

Ramagopalan

[31]

RBMCs 50 pairs of monozygotic discordant twins

with MS (68 % RRMS)

Candidate-gene

DNA

methylation

approach

No significant association between MS

and methylation level of MCH2TA

promoter IV

Baranzini [33] CD4? T

lymphocytes

3 pairs of discordant MS twins (2 RRMS

and 1 SPP)

Genome-wide

DNA

methylation

approach

No evidence of epigenome differences

Handel [32] PBMCs Benign MS (n = 48) malignant MS

(n = 20)

Candidate-gene

DNA

methylation

approach

No significant association between DNA

methylation across HLA-DRB1*1501,

HLA-DRB5 and MS severity

Ligget [34] cfpDNA RRMS(r) (n = 30) RRMS(e) (n = 29)

healthy controls (n = 30)

Genome-wide

DNA

methylation

approach

Differences in DNA methylation: in 15

promoters between RRMS(r) patients

and healthy controls, in 14 promoters

between RRMS(c) patients and healthy

controls and in 5 promoters between

RRMS(r) patients and

RRMS(c) patients. CDKN2B gene

displayed the most differentially

methylated pattern [71.0 % methylation

in RRMS(r) and 22.6 % in controls]

Janson [35] CD4? T

lymphocytes

7 healthy controls (n = 7) 10 RRMS

patients (n = 17) [under natalizumab

(n = 10), without treatment (n = 2),

under glatiramer acetate (n = 3), under

IFN-1b (n = 2)]

Candidate-gene

DNA

methylation

approach

DNA hypomethylation in FOXP3 and IL-

17 genes, in MS patients under no

natalizumab therapy compared to

healthy controls

Calabrese

[29]

PBMCs Healthy controls (n = 30) MS patients

(n = 32) [RRMS (n = 31), SPMS

(n = 1)]

Candidate-gene

DNA

methylation

approach

Upregulation and overexpression of

PAD2 gene promoter due to

hypomethylation. No correlation with

MS disease duration, EDSS, MRI

activity in the entire sample or after

stratification by gender. Mild correlation

between PAD2 concentration in

peripheral blood and EDSS, revealed by

63 % of the patients. No significant

results for PAD4

Kumagai [36] Peripheral

blood

leukocytes

(293T cells)

Normal subjects (n = 19) MS subjects

(n = 69) [PPMS (n = 7), RRMS

(n = 50), SPMS (n = 12)]

Candidate-gene

DNA

methylation

approach

Increased level of methylation in

promoter 2 of SHP-1 in MS patients

compared to healthy controls. No

association between methylation in

SHP-1 promoter and MS type, years of

disease and EDSS score

Calabrese

[39]

PBMCs Healthy controls (n = 40) MS patients

(n = 40)

Candidate-gene

DNA

methylation

approach

Downregulation of TET2 and DNMT1

gene expression in MS PBMCs induced
by defective methylation

Graves [38] CD4? T

lymphocytes

Healthy controls (n = 28) RRMS patients

(n = 30)

Genome-wide

DNA

methylation

approach

Differences in DNA methylation in 38

different genes (19 within MHC region,

55 at non-HLA genetic loci). Highest

signal at 6p21.32 of HLA-DRB1. Strong

association between DNA methylation

of HLA-DRB1 and HLA-DRB1

haplotype
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upregulation that is also associated with hypomethylation

of CpGs of PAD2 promoter [29]. PAD2 overexpression has

not been correlated with MS disease duration, gender,

expanded disability status scale (EDSS), and magnetic

resonance imaging (MRI) activity. However, in a cluster of

63 % of the MS subjects, a mild correlation between PAD2

concentration and EDSS in peripheral blood has been

revealed [29]. Research about PAD4 gene has not showed

any significant alteration in the methylation status of PAD4

in peripheral blood tissue of MS patients [29]. Changes in

DNA methylation of PAD2 promoter may lead to upreg-

ulation of PAD2 gene and increased production of PAD2

protein, which, in turn, regulates the production of citrul-

linated MBP. This less stable form of MBP leads to myelin

Table 1 continued

Author

[references]

Tissue Sample Type of study Results

Huynh [43] Brain tissue Healthy controls (n = 19) MS patients

(n = 28)

Genome-wide

DNA

methylation

approach

220 hypomethylated DMRs (containing

1235 CpGs) and 319 hypermethylated

DMRs (containing 1292 CpGs)

revealed, with oligodendrocyte-specific

genes and genes regulating

oligodendrocyte survival among them

Bos [44] Whole blood,

CD4? and

CD8? T

lymphocytes

Healthy controls (n = 14) RRMS patients

(n = 14) all females

Genome-wide

DNA

methylation

approach

Differences among CD4?, CD8? and

WB cells in their overall DNA

methylation. No consistent DNA

methylation differences between MS

and controls. Difference in methylation

level of Forty CpG-sites between MS

patients and controls. The most

significantly associated sites: a probe

near TMEM48 transcription start site,

another probe in the first exon of APC2

and several CpG-sites within DNHD1

gene. Increased hypermethylation in

CD8? cells in patients with disease

duration over 7 years or lower,

compared to those with duration above

8 years

Maltby [45] CD8? T

lymphocytes

Healthy controls (n = 28) RRMS patients

(n = 30)

Genome-wide

DNA

methylation

approach

79 methylated CpGs detected in genes

outside MHC locus, not previously

related to MS. No overlap of sites with

methylation changes between CD4?

and CD8? T cells (compared with

previous results). Strong association

between methylation changes in FTL,

ERG and DCAF4 genes and MS

Neven [46] Whole blood Healthy controls (n = 137) RRMS patients

(n = 51)

Genome-wide

DNA

methylation

approach

(repetitive

elements)

Hypermethylated Alu, LINE-1 and SAT-

a repetitive elements in MS patients

compared to healthy controls. Higher

disability associated with

hypomethylation in LINE-1 and

hypomethylation in Alu. No significant

association between methylation and

MS course, age of MS onset,

multisystem disorders, presence or

amount of CSF oligoclonal bands and

spinal cord relapse

MS multiple sclerosis, PPMS primary progressive multiple sclerosis, SPMS secondary progressive multiple sclerosis, RRMS relapsing-remitting

multiple sclerosis, RRMS (r) relapsing-remitting multiple sclerosis in remission, RRMS (e) relapsing-remitting multiple sclerosis in exacerbation,

MRI magnetic resonance imaging, EDSS expanded disability status scale, RBMCs peripheral blood mononuclear cells, PAD2 peptidylarginine

deiminase 2, PAD4 peptidylarginine deiminase 4, cfpDNA cell-free plasma DNA, CSF cerebrospinal fluid, IFN interferon, MCH major histo-

compatibility complex, HLA human leukocyte antigen, CDKN2B cyclin dependent kinase inhibitor 2B, IL interleukin, FOXP3 forkhead box P3,

SHP-1 protein-tyrosine phosphatase SHP-1, DNMT1 DNA methyltransferase1, TET2 ten-eleven translocation methylcytosine dioxygenase 2,

DMR differentially methylated region, FTL ferritin light chain, ERG ETS-related gene, DCAF4, DDB1- and CUL4-associated factor 4, THEM48

transmembrane protein 48, APC2 adenomatous polyposis coli protein 2, DNHD1 dynein heavy chain domain 1, MHC2TA class II transactivator

gene promoter IV
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destabilization and activation of immune response during

MS course [28].

There is considerable amount of evidence to support the

association between the major histocompatibility complex

(MHC) class II and MS [11]. Furthermore, the expression

of MHC molecules is regulated by MHC2TA transactiva-

tor, which, in turn, is influenced by methylation of its gene

promoter IV [30]. A study aiming to elucidate the possible

contribution of the methylation level of MCH2TA pro-

moter IV on MS susceptibility was conducted, without

revealing any significant association [31]. In an attempt to

identify the contribution of epigenetic changes (inactiva-

tion) of HLA-DRB5 and/or HLA-DRB1 to the severity of

MS, MS patients were classified according to MS severity,

based on EDSS score and MS type [32]. An additional

stratification was also made according to homozygosity

and heterozygosity for HLA-DRB 1*1501 [32]. However,

the study showed no difference in DNA methylation at

CpG dinucleotides across HLA-DRB1*1501 and HLA-

DRB5, neither between the entire malignant and entire

benign groups, nor between HLA-DRB1*1501 positive

malignant and HLA-DRB1*1501 positive benign subjects

[32]. However, a marginal higher proportion of methylated

DNA among HLA-DRB1*1501 heterozygous MS patients

with malignant phenotype compared to the benign one was

detected. On the contrary, a lower amount of DNA

methylation in HLA-DRB1*1501 homozygotes with

malignant MS was found, compared with HLA-

DRB1*1501 homozygotes with benign MS [32].

In a very interesting study, Baranzini and his colleagues

examined three pairs of discordant MS twins for possible

changes in methylation level in CD4 ? T lymphocytes

using a genome-wide DNA methylation approach. Sur-

prisingly, no significant epigenome differences were

detected [33].

Another study aimed to elucidate the role of methylation

in cell-free plasma DNA (cfpDNA), which is found in

human plasma in the form of heterogeneous polynu-

cleotides in MS [34]. Differences in DNA methylation

appeared in several gene promoters and more precisely: in

15 promoters when relapsing-remitting multiple sclerosis

in remission [RRMS(r)] was compared to healthy controls,

in 14 when relapsing-remitting multiple sclerosis in exac-

erbation [RRMS(e)] was compared to healthy controls, and

in 5 when RRMS(r) was compared with RRMS(e). The

most differentially methylated gene was found to be the

cyclin dependent kinase inhibitor 2B (CDKN2B) (71.0 %

methylation in RRMS(r) and 22.6 % in controls) [34].

DNA demethylation has also been examined in IFNG,

FOXP3, IL-13 and IL-17 genes that represent key regula-

tors of immune response and Th cell differentiation [35].

MS patients under no natalizumab treatment compared to

healthy controls were found to have DNA hypomethylation

of FOXP3 and IL-17 genes in isolated CD4? T cells.

However, this finding was not present in MS patients under

natalizumab treatment. The authors suggested that hyper-

mathylated DNA in MS patients treated with natalizumab

may not be a consequence of the drug [35].

Protein-tyrosine phosphatase SHP-1 may be implicated

into immune system activation and inflammatory

demyelination of MS patients [36]. MS patients were found

to have a higher methylation level at the promoter 2 of

SHP-1 gene and, consequently, decreased SHP-1 expres-

sion and increased leukocyte-mediated inflammation [36].

SHP-1 promoter gene methylation has previously been

reported to repress the transcription of the SHP-1 gene in

lymphoblastoid cells [37]. However, no association

between methylation of the SHP-1 promoter and MS type,

years of disease or EDSS score was detected [36].

Hypermethylation in a CpG island of SHP-1 has also been

identified by a genome-wide DNA methylation study [38].

Regulation and expression of DNMT1, DNMT3a,

DNMT3b, TET1, TET2, and TET3 genes influence the

function of the corresponding enzymes, which are impli-

cated in the conversion of 5-methylcytosine (5mC) into

5-hydroxymethylcytosine (5hmC) [39, 40]. Calabrese et al.

investigated the methylation status of these genes in MS,

by isolating PBMCs from MS patients and normal controls.

They detected alterations in the methylation level of

DNMT1 and TET2 gene promoters [39]. These methyla-

tion changes were accompanied by a downregulation of

DNMT1 and TET2 levels in MS subjects. In addition, a

moderate negative correlation was found between TET2

expression and MS duration [39]. A significant downreg-

ulation of TET3 genes in secondary progressive multiple

sclerosis (SPMS) patients has also been observed [41].

A genome-wide DNA methylation analysis revealed 19

CpG islands within MHC region. The 6p21.32 of HLA-

DRB1 locus was found to be the most significantly related

to RRMS [38]. Moreover, DNA methylation of HLA-

DRB1 seems to depend on the pattern of HLA-DRB1*1501

haplotype [38]. The study also revealed significant differ-

ences in methylation status of 55 CpGs islands of non-HLA

genetic loci, the majority of which (30 out of 55) had been

previously linked to MS [38]. However, most of non-HLA

genes that were linked to MS [42] did not reveal any

change in DNA methylation [38].

DNA methylation status in genes linked to oligoden-

drocyte function and immune response in brain areas free

of inflammation and demyelination was linked to MS. In a

genome-wide DNA methylation approach, MS duration

was associated with the differentially methylated regions

(DMRs). The analysis identified 220 hypomethylated

DMRs (containing 1235 CpGs) and 319 hypermethylated

DMRs (containing 1292 CpGs), after correction for pre-

dictors that influence the methylation status. Remarkably,
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DNA hypomethylation at CpGs was distributed at a sur-

rounding of transcriptional start sites, while hypermethy-

lated CpGs were mainly located in the main body of genes.

Among the hypermethylated autosomal genes, several

oligodendrocyte-specific genes, such as myelin basic pro-

tein (MBP) and sex determining region Y-box 8 (SOX8), as

well as genetic loci that regulate survival, such as N-myc

downstream regulated 1 (NDRG1) and bcl-2-like protein 2

(BCL2L2), were reported to be hypermethylated. To avoid

any disarray, due to inactivation of X chromosome,

researchers also performed a gender-specific analysis of the

X chromosome. Analysis of a female subgroup revealed

different cluster, including hypermethylation in neighbor-

ing gap junction protein beta 1 (GJB1), a gene that may be

involved in the function of oligodendrocyte. Upregulated

transcripts in MS compared to controls were detected in

cathepsin Z (CTSZ) vandlegumain (LGMN), which are

implicated to immune system regulation and biological

functions of the nervous cells. Downregulation was

observed in cryptochrome circadian clock 2 (CRY2), which

influences the circadian rhythm and in BCL2L2, which may

regulate neuronal death and the survival of oligodendro-

cytes. The difference in DNA methylation, according to

methylation status (hyper- or hypo-) and the average

methylation difference between MS and controls, was

validated by an independent sample. It was shown that

CTSZ and hydroxyacylglutathione hydrolase-like

(HAGHL) genes were differently expressed in MS com-

pared to controls. In a third independent subgroup, BCL2L2

differences in expression did not reach statistical signifi-

cance [43].

Another genome-wide DNA methylation approach

detected differences in the overall DNA methylation

among CD4?, CD8?, and whole blood (WB) cells,

although no consistent DNA methylation differences

between MS and controls were observed [44]. Forty CpG-

sites exhibited differences in their methylation level

between MS patients and controls, while the strongest

associations were in a probe near transmembrane protein

48 (TMEM48) transcription start site, in the first exon of

adenomatous polyposis coli protein 2 (APC2) and in sev-

eral CpG-sites within dynein heavy chain domain 1

(DNHD1) gene [44]. In MS patients, CD8? T cell DNA

revealed strong evidence for hypermethylation in a few

CpG-sites. Moreover, higher hypermethylation in CD8?

has been found in patients with disease duration over

7 years or lower, compared to those with duration above

8 years [44].

A recent genome-wide association study revealed 79

methylated CpGs in genes outside MHC locus (not previ-

ously related to MS). Both CD4? and CD8? T cells had a

single hypermethylated CpG in the MORN repeat-con-

taining protein 1 (MORN1) gene but at different genetic

sites of the gene. Ferritin light chain (FTL) gene was the

most significantly associated promoter revealing DNA

hypomethylation in MS patients compared to controls. In

addition, ETS-related gene (ERG), DDB1-, and CUL4-as-

sociated factor 4 (DCAF4) were found to be hypermethy-

lated in MS patients compared to healthy controls [45].

Changes in FTL gene expression could influence the load

of iron deposits in the gray matter of patients with RRMS,

while misregulation of the transcript of ERG could influ-

ence apoptosis, cell proliferation and inflammation proce-

dures. What is more, the defective function of DCAF4

could be implicated in neurodegeneration [45].

Differential methylation status of Alu, LINE-1 and SAT-

a repetitive elements, widely known as estimators of global

DNA methylation, may also contribute to the risk of MS

[46]. Hypermethylation of all these methylation markers

was significantly increased in MS patients compared to

healthy controls. Lower levels of LINE-1 methylation were

associated with lower EDSS scores in MS patients, while

Alu showed higher level of methylation in the group of

patients with low EDSS score [46]. No significant effect of

methylation levels was observed on the number of relapses,

the presence of spinal cord relapse, the age of MS onset

and the presence of oligoclonal bands [46]. The knowledge

of these repetitive elements across the entire genome is

very limited, although it has already been proposed that

LINE-1 hypermethylation could be the consequence of this

DNMT upregulation [47].

Concluding remarks—emerging issues

Epigenetics, and in particular DNA methylation, may be

the bridge between genotypes, environmental exposures,

and MS. However, studies on DNA methylation in MS

are relatively few, with limited sample size, and perhaps,

it is too early to draw firm conclusions so far. Yet, what is

clear from the studies is that DNA methylation is influ-

enced by environmental factors and affects gene expres-

sion that may predispose to MS. An additional

contribution of studies of MS epigenetics is that they have

revealed the significance of genetic loci that were not

previously linked to MS [45].

Epigenetic findings in MS generally differed among

different studies. A number of explanations may account

for the discordant findings. Tissue specificity in DNA

methylation, the epigenetic changes induced as a result of

aging, the possible inability of detecting loci with low

methylation changes, the limited sample size, the diversity

in methodology, and the tested MS clinical phenotypes

could explain, at least in part, the discordance of results

among the studies [3, 31]. Purified cell populations should

be preferred from mixtures of cells to receive tissue
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specific epigenetic profile. The use of new techniques could

also help to identify and estimate epigenetic changes

in vivo [3, 48]. Moreover, it should be examined how

changes in DNA methylation influence the expression of

the corresponding translational peptide. Routinely col-

lected data in epidemiological studies could be considered

as co-predictors of DNA methylation, as they have been

reported to influence DNA methylation in healthy popu-

lation [49]. In addition, prospective studies would reveal

changes in DNA methylation years before the development

of MS [50] and could provide us more information

regarding a possible clinical application of DNA methy-

lation as MS biomarker. The identification of such a bio-

marker in relation to disease development, clinical course

or treatment response in patients with MS would provide

physicians with a clinically useful and cost effective tool

[34, 51, 52]. However, the role of methylation in MS needs

further investigation as every genetic locus follows a dif-

ferent methylation pattern [28], and this is not necessarily

linked to the development of the disease.

Epigenetic changes may be reversed by treatments

intervening in the DNA methylation, histone deacetyla-

tion, and silencing of miRNAs [53, 54]. The search of

epigenetic treatments, though, is still in its infancy. The

current approach focuses on targeting key enzymes for the

procedures of DNA methylation and histone deacetyla-

tion. Agents that inhibit DNMTs and histone deacetylase

(such as 5-azacytidine and valproate, respectively) have

been proved very effective in hematological cancers.

However, clinical trials in MS patients have lingered, as

the above-mentioned epigenetic processes have not yet

been established as biomarkers for the development and

severity of the disease. Another deterrent could be the

lack of specificity of such agents, thus increasing the risk

of side effects in MS patients. Although in vitro studies

and trials in mouse models of MS seem to be very

encouraging about the therapeutic potential of DNMT and

histone deacetylase inhibitors, the contradictions men-

tioned should be taken into consideration [55]. Further

research on epigenetics in MS is of great necessity to

elucidate pathophysiological aspects and demonstrate

more effective, riskless, and personalized therapeutic

approaches.
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